x(1)=et,x(2)=etcost,x(3)=etsint在区间[-2pi,2pi]上是
举一反三
- 函数\(f(x) = x^2,\; x \in [-\pi,\pi]\)的Fourier级数为 A: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) B: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\) C: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) D: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\)
- 函数$f(x) =sin^3 x, x \in [0,2 \pi]$的单调递减区间为 A: $[\frac{\pi}{2},\frac{3}{2} \pi]$ B: $[\frac{3}{2} \pi,2 \pi]$ C: $[0,\frac{\pi}{2}]$ D: $[0,2 \pi]$
- 在区间[0,1]上随机取一个数x,sin(x)位于0到1/2的概率为( ). A: pi/6 B: pi/3 C: pi D: pi/2
- 下列函数在给定区间上满足罗尔定理条件的是( ). A: $f(x)=\dfrac 1{x},\; [-2,0]$ B: $f(x)=(x-4)^2,\;[-2,4]$ C: $f(x)=\sin x,\; [-\dfrac{3\pi}{2},\dfrac{\pi}{2}]$ D: $f(x)=|x|,\; [-1,1]$
- 求函数[img=173x42]17da65390bf2806.png[/img]的导数; ( ) A: tan(pi/4 + x/2) B: (tan(pi/4 + x/2)^2/2 ) /tan(pi/4 ) C: (tan(pi/4 + x/2)^2/2 + 1/2) D: (tan(pi/4 + x/2)^2/2 + 1/2) /tan(pi/4 + x/2)