x属于(0,pi/2),sinx+tanx<2x
否
举一反三
内容
- 0
计算 [img=61x41]17da60e4003aded.png[/img]实验命令为(). A: syms x; limit(tan(x)/(2*x))ans =1/2 B: syms x; limit(tanx/(2*x))ans =1/2 C: limit(tanx/(2*x),x,0)ans =1/2
- 1
lim(x→0)(sinx^2)/[(sinx)^2]求极限,x趋于0,
- 2
已知\( y = {x^2} + 2x \),则\( y' \)为( ). A: \( 2x + 2 \) B: \( 2x \) C: \( 0 \) D: \( x \)
- 3
y=sinx,x属于[0,pi],绕x轴旋转的体积为
- 4
8. 下列不等式正确的是 A: $0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ B: $0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$ C: $\int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ D: $\int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$