矩阵[left[ {egin{array}{*{20}{c}} { m{0}}...ay}} ight]]的逆矩阵为 ()
举一反三
- 矩阵[left[ {egin{array}{*{20}{c}} {m{0}}&{m{0}}&{m{5}}&{m{2}}\ {m{0}}&{m{0}}&{m{2}}&{m{1}}\ {m{4}}&{m{2}}&{m{0}}&{m{0}}\ {m{1}}&{m{1}}&{m{0}}&{m{0}} end{array}} ight]]的逆矩阵为 ()
- 矩阵[left[ {egin{array}{*{20}{c}} { m{0}}&{ m{0}}&{ m{5}}&{ m{2}}\ { m{0}}&{ m{0}}&{ m{2}}&{ m{1}}\ { m{4}}&{ m{2}}&{ m{0}}&{ m{0}}\ { m{1}}&{ m{1}}&{ m{0}}&{ m{0}} end{array}} ight]]的逆矩阵为 ( ) </p></p>
- [left| {egin{array}{*{20}{c}} 0&0&0&a\ b&0&0&0\ 0&c&0&0\ 0&0&d&0 end{array}} ight| = ]()
- 设多项式[f(x) = left| {egin{array}{*{20}{c}} x&2&3&4\ x&x&x&3\ 1&0&2&x\ x&1&3&x end{array}} ight|],则多项式的次数为( ) </p></p>
- 矩阵\[\left[ {\begin{array}{*{20}{c}}{\rm{0}}&{\rm{0}}&{\rm{5}}&{\rm{2}}\\{\rm{0}}&{\rm{0}}&{\rm{2}}&{\rm{1}}\\{\rm{4}}&{\rm{2}}&{\rm{0}}&{\rm{0}}\\{\rm{1}}&{\rm{1}}&{\rm{0}}&{\rm{0}}\end{array}} \right]\]的逆矩阵为 ()