举一反三
- 矩阵[left[ {egin{array}{*{20}{c}} {m{0}}&{m{0}}&{m{5}}&{m{2}}\ {m{0}}&{m{0}}&{m{2}}&{m{1}}\ {m{4}}&{m{2}}&{m{0}}&{m{0}}\ {m{1}}&{m{1}}&{m{0}}&{m{0}} end{array}} ight]]的逆矩阵为 ()
- 矩阵[left[ {egin{array}{*{20}{c}} { m{0}}&{ m{0}}&{ m{5}}&{ m{2}}\ { m{0}}&{ m{0}}&{ m{2}}&{ m{1}}\ { m{4}}&{ m{2}}&{ m{0}}&{ m{0}}\ { m{1}}&{ m{1}}&{ m{0}}&{ m{0}} end{array}} ight]]的逆矩阵为 ( ) </p></p>
- [left| {egin{array}{*{20}{c}} 0&0&0&a\ b&0&0&0\ 0&c&0&0\ 0&0&d&0 end{array}} ight| = ]()
- 设多项式[f(x) = left| {egin{array}{*{20}{c}} x&2&3&4\ x&x&x&3\ 1&0&2&x\ x&1&3&x end{array}} ight|],则多项式的次数为( ) </p></p>
- 矩阵\[\left[ {\begin{array}{*{20}{c}}{\rm{0}}&{\rm{0}}&{\rm{5}}&{\rm{2}}\\{\rm{0}}&{\rm{0}}&{\rm{2}}&{\rm{1}}\\{\rm{4}}&{\rm{2}}&{\rm{0}}&{\rm{0}}\\{\rm{1}}&{\rm{1}}&{\rm{0}}&{\rm{0}}\end{array}} \right]\]的逆矩阵为 ()
内容
- 0
设[A = left( {egin{array}{*{20}{c}} a&b&...)],` A`的伴随阵的秩为1,则()
- 1
设`\A`是3阶矩阵,将`\A`的第1列与第2列交换得到`\B`,再把`\B`的第2列加到第1列得`\C`,则满足`\AP=C`的可逆矩阵`\P` ( ) A: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&{\rm{1}}&{\rm{1}}\\0&0&1\end{array}} \right]\] B: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&0\\{\rm{1}}&0&1\end{array}} \right]\] C: \[\left[ {\begin{array}{*{20}{c}}1&{\rm{0}}&0\\1&{\rm{1}}&0\\0&0&1\end{array}} \right]\] D: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&0\\0&0&1\end{array}} \right]\]
- 2
\[A = \left[ {\begin{array}{*{20}{c}} 2&2&3\\ 2&3&1\\ 3&4&4 \end{array}} \right]\],且`\BA = A + B`,则矩阵`\B=` ( ) </p></p>
- 3
(2). 设二维随机变量 ( (X,Y) ) 具有密度函数, [qquadqquad qquadqquad f(x,y)=left{ {{egin{array}{*{20}c} {ax,} & {0</p>
- 4
设\(n\)阶矩阵\(A\)的伴随矩阵为\({A^ * }\),若\(\left| A \right| = 0\),则\(\left| { { A^ * }} \right| \ne 0\).