[left| {egin{array}{*{20}{c}} 0&0&0&a\ b&0&0&0\ 0&c&0&0\ 0&0&d&0 end{array}} ight| = ]()
举一反三
- 矩阵[left[ {egin{array}{*{20}{c}} {m{0}}&{m{0}}&{m{5}}&{m{2}}\ {m{0}}&{m{0}}&{m{2}}&{m{1}}\ {m{4}}&{m{2}}&{m{0}}&{m{0}}\ {m{1}}&{m{1}}&{m{0}}&{m{0}} end{array}} ight]]的逆矩阵为 ()
- 矩阵[left[ {egin{array}{*{20}{c}} { m{0}}&{ m{0}}&{ m{5}}&{ m{2}}\ { m{0}}&{ m{0}}&{ m{2}}&{ m{1}}\ { m{4}}&{ m{2}}&{ m{0}}&{ m{0}}\ { m{1}}&{ m{1}}&{ m{0}}&{ m{0}} end{array}} ight]]的逆矩阵为 ( ) </p></p>
- 矩阵\[\left[ {\begin{array}{*{20}{c}}{\rm{0}}&{\rm{0}}&{\rm{5}}&{\rm{2}}\\{\rm{0}}&{\rm{0}}&{\rm{2}}&{\rm{1}}\\{\rm{4}}&{\rm{2}}&{\rm{0}}&{\rm{0}}\\{\rm{1}}&{\rm{1}}&{\rm{0}}&{\rm{0}}\end{array}} \right]\]的逆矩阵为 ()
- 矩阵[left[ {egin{array}{*{20}{c}} { m{0}}...ay}} ight]]的逆矩阵为 ()
- 设`\A`是3阶矩阵,将`\A`的第1列与第2列交换得到`\B`,再把`\B`的第2列加到第1列得`\C`,则满足`\AP=C`的可逆矩阵`\P` ( ) A: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&{\rm{1}}&{\rm{1}}\\0&0&1\end{array}} \right]\] B: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&0\\{\rm{1}}&0&1\end{array}} \right]\] C: \[\left[ {\begin{array}{*{20}{c}}1&{\rm{0}}&0\\1&{\rm{1}}&0\\0&0&1\end{array}} \right]\] D: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&0\\0&0&1\end{array}} \right]\]