(4). 已知总体 \( X \) 服从 \( [0,\lambda ] \) 上的均匀分布( \( \lambda \) 未知) \( X_1 ,X_2,\cdots X_n \) 为 \( X \) 的样本,则()。
举一反三
- (6). 设总体 \( X \) 服从 \( P(\lambda ) \) 分布,\( X_1 ,X_2 ,\cdots ,X_n \) 为样本,\( \bar {X} \) 为样本均值,则以下结论中错误的是()。
- (4). 已知总体 \( X \) 服从 \( [0,\lambda ] \) 上的均匀分布( \( \lambda \) 未知) \( X_1 ,X_2<br/>,\cdots X_n \) 为 \( X \) 的样本,则( )。 A: \( \frac{1}{n}\sum\limits_{i=1}^n {X_i } -\frac{\lambda }{2} \) 是一个统计量; B: \( \frac{1}{n}\sum\limits_{i=1}^n {X_i } -EX \) 是一个统计量 C: \( X_1 +X_2 \) 是一个统计量; D: \( \frac{1}{n}\sum\limits_{i=1}^n {X_i^2 -DX}<br/>\) 是一个统计量。
- 设总体X~N(μ,σ^2 ),其中μ和σ^2 均未知,X_1,X_2,⋯,X_n 是总体X的一个样本,则样本均值X ̅是μ的无偏估计量.
- (1). 设总体 \( X \) 具有有限的数学期望 \( EX \) 和方差 \( DX \),\( X_1 ,X_2 ,\mbox{ }\cdots ,X_n \) 为总体 \( X \) 的样本,那么对样本均值 \( \bar {X}=\frac{1}{n}\sum\limits_{i=1}^n{X_i } \) 有()。
- 若随机变量\(X\)服从参数为\(\lambda\)的泊松分布\(X\sim P(\lambda)\),且\(P\{X=2\}=P\{X=3\}\),则\(\lambda=\)( )