(7). 设 \( X,Y \) 独立同分布,且 \( X\sim B(1,0.8) \),则 \( E\left\{ {\min \left({X,Y} \right)} \right\} \) 等于()。
举一反三
- (1). 已知随机变量 \( X\sim N\left( {2,1} \right) \),\( Y\sim N\left( {-3,4}\right) \),且 \( X \) 与 \( Y \) 相互独立,设随机变量 \( Z=2X+Y-1 \), 则 \( cov\left( {X,Z} \right) \) 等于()。
- 若\({y_1}\left( x \right), {y_2}\left( x \right)\)都是\(y' + P\left( x \right)y = Q\left( x \right)\)的特解,且 \({y_1}\left( x \right), {y_2}\left( x \right)\) 线性无关,则通解可表为\(y\left( x \right) = {y_1}\left( x \right) + C\left[ { { y_1}\left( x \right) - {y_2}\left( x \right)} \right]\)。
- 设\(z = {e^u}\sin v,\;u = xy,\;v = x + y\),则\( { { \partial z} \over {\partial y}}=\)( ) A: \(x{e^{xy}}\sin \left( {x + y} \right) + {e^{xy}}\cos \left( {x + y} \right)\) B: \(x{e^{xy}}\sin \left( {x + y} \right) \) C: \( {e^{xy}}\cos \left( {x + y} \right)\) D: \(x{e^{xy}}\sin \left( {x + y} \right) - {e^{xy}}\cos \left( {x + y} \right)\)
- (4). 设每年袭击某地的台风次数 \( X\sim P\left( \lambda \right) \),且\( P\left\{ {X=1} \right\}=P\left\{ {X=2} \right\} \),则概率 \(P\left\{ {X=4} \right\} =\)()。
- 函数$y = \ln x$,则${\left( {\ln x} \right)^{\left( n \right)}} = {\left( { - 1} \right)^{n - 1}}{{\left( {n - 1} \right)!} \over {{x^n}}}$。( )