• 2022-06-01
    设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是有单位元的交换环, 证明: [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个域[tex=2.071x1.0]bMRrINhuwlMbjrHDeWypolm63DRNVHJ9HbNYCM+Hi9g=[/tex]的理想只有[tex=1.5x1.357]NOCPYNtDvmDx0X9A9YTbEQ==[/tex] 和[tex=1.071x1.0]h9ILou3P7Mn69Kuw8fnq7w==[/tex]注 本题有误. 这是因为: 当[tex=3.071x1.357]9A9nYK5hmRgtjsWJfPXzrw==[/tex] 时,[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元的交换环,[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]不是一个 域, 但[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想只有[tex=1.5x1.357]NOCPYNtDvmDx0X9A9YTbEQ==[/tex]和[tex=1.071x1.0]u45wpeE204qOexrycojF0Q==[/tex]应将本题改为“设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是至少含有两个元素的有单位元的交换环, 证明 : [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个域 [tex=2.071x1.0]bMRrINhuwlMbjrHDeWypolm63DRNVHJ9HbNYCM+Hi9g=[/tex]的理想只有[tex=1.5x1.357]NOCPYNtDvmDx0X9A9YTbEQ==[/tex]和[tex=1.5x1.429]kO0M/I6D9JzH6hOV0X2lqg==[/tex]下面就修改后的题目进行证明.
  • 证明  假设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个域. 考察 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的任意非零理想[tex=0.786x1.0]L0JX3SxeywLK6FgS2rtxng==[/tex]任[tex=3.929x1.357]W5J4WMPx4bQH7w/TLxJfawI/R78qZiG1um0xTgtUQAI=[/tex] 由于[tex=2.786x1.357]jMwhHRepdaejcNEfSxi7P58+juPzHjHn9umjrj0S0Ik=[/tex]关于乘法构成一个群, 因此对于任意的[tex=3.929x1.357]4oq0dK0daMD5HPRATJ3eiTMYSYRbp6fuVVGY5WFcQqU=[/tex], 存在[tex=3.857x1.357]qzFYC+qWRMOQRXcC8bnW9c8IAKkICXllLVwLw1IAnJ0=[/tex], 使得[tex=2.214x1.0]A5C6eiaoijCeWoCMBDLzWg==[/tex], 从 而,[tex=1.857x1.071]MNs68EU5Yc23GYaNMIQcyA==[/tex] 由此可见,[tex=2.286x1.0]vK2kLCZXt4elaIefSVOpqQ==[/tex]所以[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想只有[tex=1.5x1.357]NOCPYNtDvmDx0X9A9YTbEQ==[/tex]和[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex].假设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]不是域. 于是, 存在非零元[tex=2.0x1.071]cEfxtcWLM4J1W7/FE7wQ7Q==[/tex], 使得[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]不可逆. 因此[tex=3.071x1.357]tciggeQW9acFxh9ukADQJw==[/tex], 从而, [tex=4.0x1.286]Cc6XRwR7bMlJxoxuocB3yxmvEQvUYSTkyHNESJ4d2Bg=[/tex]且[tex=3.357x1.286]+1TzzKlZ6eTwRlF7ui73Nw==[/tex].

    举一反三

    内容

    • 0

      证明定理:设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个有单位元的环, [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的一个未定元.(1) [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的零元 0 就是[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]的零元 (即零多项式);(2) [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 是有单位元的环,且 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的单位元就是 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的单位元;(3) 如果  [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]  是无零因子环, 则 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 也是无零因子环, 且 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的单位就是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的单位;(4) 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是交换环,则 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 也是交换环;

    • 1

      设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个环,并且[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]对于加法来说作成一个循环群,证明[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个交换环。

    • 2

       设[tex=15.143x1.571]E54eZ8R4U25cyKx0caDhv/ecp+XhuBvy8q3bDuZwl8iFl2hUEF+qiBPESPVImob1idcebmNK2IbzWrKPtNVZo9IFXVfNuEuFyIyMRzYmE3RX04u+OAcK2ms91Yi4jkXtyjHw3G4aYncetVlJRehvnQ==[/tex] 这是模 3 的高斯整环,其加法和乘法运算如同复数, 但系数要模 3. 试列出 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的乘法表. 并证明 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是个 ( 有 9 个元素的) 域.

    • 3

      设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构, 证明: [tex=1.571x1.429]WwcGTNxNgqKGUcObs50zWg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构. 

    • 4

      设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元的环. 证明: 环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的可逆元全体 [tex=2.286x1.357]VSrq2EBbjY/lzOCsf2jcIg==[/tex] 关于环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的乘法构成群.