• 2022-06-01
    设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是有单位元的交换环, 证明: [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个域[tex=2.071x1.0]bMRrINhuwlMbjrHDeWypolm63DRNVHJ9HbNYCM+Hi9g=[/tex]的理想只有[tex=1.5x1.357]NOCPYNtDvmDx0X9A9YTbEQ==[/tex] 和[tex=1.071x1.0]h9ILou3P7Mn69Kuw8fnq7w==[/tex]注 本题有误. 这是因为: 当[tex=3.071x1.357]9A9nYK5hmRgtjsWJfPXzrw==[/tex] 时,[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元的交换环,[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]不是一个 域, 但[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想只有[tex=1.5x1.357]NOCPYNtDvmDx0X9A9YTbEQ==[/tex]和[tex=1.071x1.0]u45wpeE204qOexrycojF0Q==[/tex]应将本题改为“设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是至少含有两个元素的有单位元的交换环, 证明 : [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个域 [tex=2.071x1.0]bMRrINhuwlMbjrHDeWypolm63DRNVHJ9HbNYCM+Hi9g=[/tex]的理想只有[tex=1.5x1.357]NOCPYNtDvmDx0X9A9YTbEQ==[/tex]和[tex=1.5x1.429]kO0M/I6D9JzH6hOV0X2lqg==[/tex]下面就修改后的题目进行证明.
  • 举一反三