设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个有单位元的环,[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]中的单位(即可逆元).证明:若有二互素整数[tex=1.929x1.0]+MkgvJhrh9DSU9I+bn6v4w==[/tex]使[p=align:center][tex=6.286x1.214]heRFm+iYOVdYaQJun1eOIrMHsUgW8o1KE1j3nQoyuE0=[/tex]则必[tex=1.786x1.0]e6yz2KDSejyMapjVGIIQDA==[/tex].
举一反三
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个有单位元的环. 如果[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]中元素[tex=1.286x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex]有[tex=2.286x1.0]rZ0c/DqUwOwC6KLNVAW7uQ==[/tex],则称 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]是[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的一个右逆元,而称[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]的一个左逆元. 证明卡普兰斯基(L Kaplansky) 定理:若[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]中元素[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]有多于一个的右逆元,则[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]必有无限多个右逆元.
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是唯一分解整环,[tex=4.286x1.214]uTy6R3F65a66IXR6qHmTRw==[/tex], 假设[tex=1.714x1.357]1mJQqZzrH+TIDpo6SuXAXQ==[/tex]且[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]互素, 证明:[tex=1.286x1.357]CXIInTAbUhSPbRPM0AkH9A==[/tex].
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个环, [tex=2.286x1.071]BX5Hq24pv20xx1ImfWhlnQ==[/tex] 如果存在 [tex=2.5x1.214]MUBOqhgSidNbIiPGutca8TrElVNegsU2eDrOYBfzzXU=[/tex] 使 [tex=2.571x1.214]vISNIN/rFHRC9rdtmDdjoQ==[/tex] 则称 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的一个幂零元(nilpotent element).(1) 试求 [tex=1.429x1.214]jBC5UhniB1q3BXBWtSyFOc2/wXu1a7+esOF5m9BzKww=[/tex] 的所有幂零元;(2) 证明: 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元[tex=0.5x0.786]rCTQ93hYjIOF3vc8FasIqg==[/tex] 的交换环, [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的一个幕零元, 则 [tex=1.857x1.071]TckY1UXsKGQ9dh30ORCSzg==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的一个可逆元;(3) 证明: 交换环的幂零元全体构成一个子环.
- 设[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]和[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]是含幺环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]中的两个可逆元,证明:[tex=1.357x1.071]fA225ivWb74oma1CR5Piow==[/tex]也是可逆元, 且 [tex=6.357x1.5]oiuwd+L46nf4K9wnrs8yJhxCg2GxCkxMeZ3YRQhQONQ=[/tex]
- 证明定理:设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个有单位元的环, [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的一个未定元.(1) [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的零元 0 就是[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]的零元 (即零多项式);(2) [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 是有单位元的环,且 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的单位元就是 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的单位元;(3) 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是无零因子环, 则 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 也是无零因子环, 且 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的单位就是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的单位;(4) 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是交换环,则 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 也是交换环;