设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个环, [tex=2.286x1.071]BX5Hq24pv20xx1ImfWhlnQ==[/tex] 如果存在 [tex=2.5x1.214]MUBOqhgSidNbIiPGutca8TrElVNegsU2eDrOYBfzzXU=[/tex] 使 [tex=2.571x1.214]vISNIN/rFHRC9rdtmDdjoQ==[/tex] 则称 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的一个幂零元(nilpotent element).(1) 试求 [tex=1.429x1.214]jBC5UhniB1q3BXBWtSyFOc2/wXu1a7+esOF5m9BzKww=[/tex] 的所有幂零元;(2) 证明: 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元[tex=0.5x0.786]rCTQ93hYjIOF3vc8FasIqg==[/tex] 的交换环, [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的一个幕零元, 则 [tex=1.857x1.071]TckY1UXsKGQ9dh30ORCSzg==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的一个可逆元;(3) 证明: 交换环的幂零元全体构成一个子环.
举一反三
- 证明定理:设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个有单位元的环, [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的一个未定元.(1) [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的零元 0 就是[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]的零元 (即零多项式);(2) [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 是有单位元的环,且 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的单位元就是 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的单位元;(3) 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是无零因子环, 则 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 也是无零因子环, 且 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的单位就是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的单位;(4) 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是交换环,则 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 也是交换环;
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个无非零的幂零元的交换环, [tex=3.071x1.214]lK8T9ymDQTy57eul2bcrGg==[/tex] 证明: 如果存在 [tex=3.286x1.214]282Son75OJ82c3EPj3mt9PvnX0MExerfj7gH7rgN9P4=[/tex] [tex=3.786x1.357]MvOR1twL8ScIP7HQekPJfg==[/tex]使 [tex=5.714x1.429]KDa18Y/h1W41Ipn97PLwTV7i9xYjucaKywhDmKzNaoo=[/tex]则 [tex=2.0x0.786]dA43gVqrUo0sykLNN33uYQ==[/tex]
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元 [tex=0.5x0.786]rCTQ93hYjIOF3vc8FasIqg==[/tex] 的环, [tex=2.286x1.071]BX5Hq24pv20xx1ImfWhlnQ==[/tex] 证明: 如果存在唯一的 [tex=2.143x1.214]0G40S7xy/AyjVZa9odMngw==[/tex] 使 [tex=3.071x1.214]7QjMUvcbaXnFztR0qOs4Dg==[/tex]则 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的单位.
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个只有有限多个元素的交换环,且[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]没有零因子。证明[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个域。
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个环,并且[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]对于加法来说作成一个循环群,证明[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个交换环。