• 2022-06-01
    把函数展开成z的幂级数,并指出它的收敛半径。[tex=3.643x1.286]MN1wTgksDWk6Ww0TYJHpUXnY+DFg+K2rAWayebdZkEY=[/tex]
  • 因[tex=10.857x2.5]fiyqOQ4Pm9hOFg8ZSSAcP+Gis6ukYPV3l9csRtoaflFju5CnWqOjppxBV8ei1Zpdh7++v2bSc7BxORQPiyCBcCe8vD3C248DDEa3awoVZrE=[/tex],[tex=4.143x1.357]/PIJ7ZTceuioAEuFfv000oBFbFCYlreYH73QNuo4oE0=[/tex],[tex=11.071x2.5]OPtun3pMN29K13gjwvD07FIxhB8hcV3xeflx1LzDiHcl4wasf6OKotJVNevH40MvA2VWKWjVi+aMOwZrTVpUYlrhirmMGNp3ZwD5E3kcTZI=[/tex][tex=4.143x1.357]/PIJ7ZTceuioAEuFfv000oBFbFCYlreYH73QNuo4oE0=[/tex]故[tex=4.429x1.286]MN1wTgksDWk6Ww0TYJHpUXK/ORU8WmKvXeXSkcZsEfw=[/tex][tex=10.429x2.786]q5xAXPjwgfljHLlDNjPWssC+DRXHjzHN1jOLkuxjd7iMsnR++XrZjOfli2QUblkgyP/0e0D7N4vR+FWa+Kfstmxe872H+lpeDc8daiZh60o=[/tex][tex=10.429x2.786]oSs6bA2fCsXJAKCc0Ne+HzD36F0UcQvNZzNwBPwd4JAuTyEGGSIfdH4JOmptC+wLPqtMZIb8SqYqnukZ7tXlklAPoAEBLoKIdDW3MTSeCZg=[/tex][tex=11.786x2.5]lT7T0Jyo58LHCa4rcnjZkGwedYMVBp37cmPubgRbI64HzzDjW8j1dZM1a8X5PZBVJ2/sc3Yz6hTcy/pRfZoyuA==[/tex]而效率半径[tex=3.357x1.143]553VXtETZBUcvifHFzzViA==[/tex]。

    内容

    • 0

      把函数 [tex=5.286x2.643]K0Ys9qSKBnMoxEB/r/TYoDWegMZZRtUxNFH0mDQf9ls=[/tex] 展成 [tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex] 的幂级数,并指出其收敛半径.

    • 1

      将下列各函数展开成含z的幂级数或双边幂级数,并指明函数的收敛范围:[tex=5.143x2.643]oTycNkqsw/9PYixNe16fe5qfaodpSYKgoz4UwHbKOJckAg6FHCrIAhk/inAj0yzZ[/tex]

    • 2

      将此函数展开成幂级数,并求其收敛域:[tex=5.071x1.5]P3tWNXBkvByPBxWa5Z6mQyg1i+litlf9uum6PqxGxT8=[/tex]

    • 3

      将[tex=5.214x2.429]PklLvipMSf6rUA6Xmu4DoBrKbS97734ztK2OFvU4bNA=[/tex]分别展开为[tex=1.786x1.143]zklOsAnRIBBYEiRao4F1DA==[/tex]的幂级数,并求出收敛半径.

    • 4

      将[tex=5.214x2.429]PklLvipMSf6rUA6Xmu4DoBrKbS97734ztK2OFvU4bNA=[/tex]分别展开为[tex=0.5x0.786]gdMkE6SnyZedYLxpUxdkaQ==[/tex]的幂级数,并求出收敛半径.