设n阶矩阵A、B、C满足ABC=E,则C-1=()
A: AB
B: BA
C: A-1B-1
D: B-1A-1
A: AB
B: BA
C: A-1B-1
D: B-1A-1
举一反三
- A,B为n阶可逆矩阵,若AB=BA,则(AB)-1=A-1B-1.A,B为n阶可逆矩阵,则(AB)-1=A-1B-1?
- 设AB为同阶可逆方阵,则() A: (A+B)-1=A-1B-1 B: (A+B)-1=B-1A-1 C: (A+B)-1=A-1+B-1 D: 以上都不对
- 若\(A,B\)都是n阶可逆矩阵,且满足\(AB=BA\)则下述结论错误的是 A: \(A^{-1}B=BA^{-1}\) B: \(AB^{-1}=B^{-1}A\) C: \(A^{-1}B^{-1}=B^{-1}A^{-1}\) D: \(BA^{-1}=AB^{-1}\)
- 设A和B都是n阶矩阵,则必有( ) A: |A+B|=|A|+|B| B: AB=BA C: |AB|=|BA| D: (A+B)—1=A—1+B—1
- 设A和B都是n×n矩阵,则必有() A: ∣A+B∣=∣A∣+∣B∣ B: AB=BA C: ∣AB∣=∣BA∣ D: (A+B) -1 =A -1 +B -1