设整系数多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的4个不同整数值上都取值为1, 则[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的其它整数值上的值不可能是-1。
举一反三
- 证明,设正整数[tex=3.0x1.143]y9waEgZ1sBnU9mr8lb4z6Q==[/tex],并且[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次整系数多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的[tex=3.571x2.214]t52cQAsFAmSV6XlZMXYYyMhzZEX31fySn77CO0Ut4WU=[/tex]个以上的整数值上取值为[tex=1.286x1.143]tkm29yuKKtwOsgBeQx8hOw==[/tex],则[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=0.786x1.214]qWTwUSIEBK1EwCOmwQzggg==[/tex]不可约。次数[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的下界12是否还可缩小?
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=1.857x1.357]VmBbVJMXt2JXSfX9IcTKCw==[/tex]中的首一多项式,[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的一个有理根,证明[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是整数。
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 连续, 且积分 [tex=8.5x2.786]BL7n5ddwJNHAhb4R+nxZA5ywU1gR80QQQ33J/mBX1n0oq5p5lu1KM79R224W0TLc[/tex] 与 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 无关. 求 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex].
- 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]处可导和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在点[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]处不可导,问[tex=4.5x1.357]z7c84EiIzVU2j92Qk10/Fg==[/tex],[tex=3.714x1.357]UTNCNO2lJ9B2T1F+8u6tvg==[/tex]在点[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]处是否可导?
- 设 [tex=11.643x1.357]oTHWUnECoN4UNiGFVZoHA6aTyRMpVVzUfRE1/OUCXUda+cK8PWDBj4DGgVDCvWMH[/tex] 求适合下列条件的点[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex](1) [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的最大、最小值点.(2) [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 增加最快、最慢的点.(3) [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 图像的切线斜率增加最快的点.