设 [tex=11.643x1.357]oTHWUnECoN4UNiGFVZoHA6aTyRMpVVzUfRE1/OUCXUda+cK8PWDBj4DGgVDCvWMH[/tex] 求适合下列条件的点[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex](1) [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的最大、最小值点.(2) [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 增加最快、最慢的点.(3) [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 图像的切线斜率增加最快的点.
举一反三
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 连续, 且积分 [tex=8.5x2.786]BL7n5ddwJNHAhb4R+nxZA5ywU1gR80QQQ33J/mBX1n0oq5p5lu1KM79R224W0TLc[/tex] 与 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 无关. 求 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex].
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]对一切实数[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]满足关系式[tex=12.143x1.571]oe6Y6KRQZY0QeXLoNKQj2DVVRBW7T0DL8xdrtxeSAEoXt8XX9huFYhQt/cuGw/8AYID9CLGbIkfiAmVNgp4LppysqTV/2DsOaMNLjQWUZ1HIkuZNLAXNso46jkt+HsoP[/tex](1) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=6.5x1.286]v96cVO/vN8TOnG6sstlXr29k5oMFbB4Oct7UG0scbYvUjzk3AdAIJTKxq5gTYDgP[/tex]处有极值,试证它是极小值.(2) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处有极值,则它是极大值还是极小值?
- 若点[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]为[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的极值点,则点[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]必为[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的驻点.
- 设[tex=9.0x2.857]dT5tO8+kvspSX29znp6hWPcRleyC/Oor3hOtFnEeVKWMhAwyQN1L849Sg2m7O8+O[/tex].(1)证明[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是以[tex=0.571x0.786]l57IXZOdm4C+U7oqJ3rVIQ==[/tex]为周期的周期函数;(2)求函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的值域.
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 的某邻域内有定义, 且[tex=14.143x2.0]j9xQoAXOO/rhZ2v9jEBRiI8bw3CHft7hrxnaKNO/f+t5UbORG8jSsjO7SikHkPHo[/tex] 试判断:(1) 函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处是否可微? 若可微,给出函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处的微分;(2)函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处是否可导?若可导,给出函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处的导数.