若根号a有意义,则a_;当a_时,根号负a无意义
举一反三
- 作为线性空间$R^{3}$上的变换,下列$\cal A$不是线性变换的是( )。 A: $\cal {A}(a_{1},a_{2},a_{3})=(2a_{1}-a_{2}+a_{3},a_{2}-a_{3},2a_{1}+a_{3})$ B: ${\cal A}(a_{1},a_{2},a_{3})=(a_{1},0,a_{2})$; C: ${\cal A}(a_{1},a_{2},a_{3})=(a_{1},2a_{2},3a_{3})$ D: ${\cal A}(a_{1},a_{2},a_{3})=(a_{1}^{2},a_{2}-a_{3},a_{3}^{2})$
- 若根号1-3a+/8b-3/=0,则3次根号ab=?
- 若根号(14.02)=x,则根号y=x/10,则y=?
- 若a、b满足关系式根号(3x-6)+根号(2y-7)=根号(a+b-2010)-根号(2010-a-b)
- “根号下负A乘以根号下负B等于根号下AB”是数学家()提出的观点