如果 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]满足[tex=3.571x1.429]c5Cf4pRARaBipYntugL/3kWzFBMtOu9hHfk8QjSjCP9p2vY2mfUTmWQYcFK6ZcYR[/tex]证明[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]一定是单位矩阵.
举一反三
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]的元素全是 1, 求[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个特征值.
- 设 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex] 满足 [tex=7.857x1.429]c5Cf4pRARaBipYntugL/3lT+2P1wm6Adh3C4DrnE9zxs+rWtSanIqQObZuSRWOwG9blJ971ltu2szZRAgz9tDGmAFCyPUND2/APoUofpCtg=[/tex] 证明 [tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex] 及 [tex=3.429x1.143]O8o/cZDTF8ipMqduQHBWgki+n11gPYz8nHp16jZXhUg7OeviFnwy5FJ9ddmOhPO1[/tex] 均可逆,并求它们的逆.
- 若矩阵 [tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex] 满足 [tex=3.214x1.429]c5Cf4pRARaBipYntugL/3g4G9yaUH0tIlHD2joA/k+ReH5exc65Bl22PEHTwNvwm[/tex] 证明: [tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex] 的特征值 [tex=1.0x1.214]BJgXz+H9TVMXJqlPyvsQ8A==[/tex] 只能为 0 或 1 .
- 设[tex=0.929x1.0]JkZEjSnuwtkZlFnZMXvQ5Q==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,且满足[tex=2.929x1.214]vfVZ2jJRqLexUimvCjMPE/6xT+hyy6o+qSw0BucxBec=[/tex]。证明:[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]的特征值只能是0或1。[br][/br]
- 证明题.已知[tex=1.286x1.071]c5Cf4pRARaBipYntugL/3iX6j2L25q2ZK/Q/aYNhVjo=[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶非奇异矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]的伴随矩阵,证明[tex=5.714x1.571]ddtNYyKpszqy7W1RYYQRuJZasoNzCZR9FkXZ1Z5jwi7Wx2zSACVPzsGHBK+qS28/oIxnwHnNP7mWfDrjrFvgrN1ul3WsfG0YUPfp12PaQg0=[/tex].