若函数[img=133x27]1803d342a9e659f.png[/img]在x = 1处取得极值2,则a =( )
A: 1
B: -1
C: 2
D: -2
A: 1
B: -1
C: 2
D: -2
举一反三
- 【简答题】若函数 f ( x ) = ax 2 + 2 x - ln x 在 x = 1 处取得极值. (1) 求 a 的值; (2) 求函数 f ( x ) 的单调区间及极值.
- 函数[img=73x26]1803467b5e85eef.png[/img]的极值为( ). A: f(0)=1 B: f(1)=2 C: x=0 D: x=1
- 若函数f(x)=a|2x-4|(a>;0,且a≠1),满足f(1)=[img=11x33]17da450bfe1238a.jpg[/img],则f(x)的单调递减区间是( ) A: (-∞,2] B: [2,+∞) C: [-2,+∞) D: (-∞,-2]
- 已知函数y=f(x)在点x=x0处存在极限,且[img=33x31]17e0bf8f4779d17.png[/img]f(x)=a2-2,[img=33x31]17e0bf8f532f434.png[/img]f(x)=2a+1,则函数y=f(x)在点x=x0处的极限为( ) A: -1或2 B: -1或3 C: -1或7 D: -1或9
- 若函数 [img=259x27]1803bbed92aba9b.png[/img]在点(1,-1)处取得极值,则常数a= ______,b = _______ A: a = 1,b =4 B: a = 0,b =2 C: a =1,b =2 D: a = 0,b =4