将指数回归模型[p=align:center] [tex=4.714x1.429]CQPuOeKvWGPnwxMK3vcCCaJcM3bRsxIMfsUxeh3K7sMmQYraplimPJ88UqAxwtj9ZD0zQmchtTC5tXrD9+2d3A==[/tex]转化为一个线性回归模型(即对数-对数模型),分析 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 与 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 之间的弹性系数的特点.
举一反三
- 设 [tex=14.714x1.786]aLaCiMeQxrqYpBwEkSlxSPLPSo1EH2oH8rwf3Qv+HBI/FWokk4L6KpujeyzBfq3y8W0xRrAzImW/bCJUquHScBAmZGYmjgCv8GNS5NjcIG8=[/tex] ,通常称之为 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 关于 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的条件方差. 证明[p=align:center][tex=14.0x1.357]jEbgz09r43DH8Jr+6MKRz8h4VYP2gRdZqwXLlW86Asy22Dla2jGiuD6Q/M/9Q9tR[/tex]
- 设 [tex=14.714x1.786]aLaCiMeQxrqYpBwEkSlxSPLPSo1EH2oH8rwf3Qv+HBI/FWokk4L6KpujeyzBfq3y8W0xRrAzImW/bCJUquHScBAmZGYmjgCv8GNS5NjcIG8=[/tex] ,通常称之为 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 关于 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的条件方差. 证明[p=align:center][tex=14.929x1.571]Skbn46H81ffrPlattEfBRmBUH3Uh2BAEWdxBW4yr4apix/DQZHgkC/zKk6CLWA2jaJUN2R0MkOF9Ys097vZyTw==[/tex]
- 设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立,均服从参数为[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]的[tex=2.286x1.143]gYH3bLZp3hQ23K/oQLCB7g==[/tex]分布,定义[p=align:center][tex=7.643x3.643]uTp1SXywanBkfZjW5eU7lPIP9aHAX4xIgHPIVUhfjihLWGj/nHH9HHsIScnA3x022uP3MgwKzy6SxEEvuHTsPQ==[/tex]求: [tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] 取何值时, [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 与 [tex=0.714x1.0]A/RYZa+bKKYYpjzBS/r5ng==[/tex] 相互独立.
- 设[tex=5.5x1.357]jO6lZeZZ3OdVBdz43/a9oQ==[/tex],[tex=0.857x1.0]9FikB2YJlXD9Uda+jSZ+aQ==[/tex]上有如下两个关系:[p=align:center][tex=7.857x1.357]pd9l8znrdYExN6Olk0rlGnNU6qc4HWiNE29Cv4d3un4=[/tex]或[tex=3.071x1.357]40x9aRMI5okS8j0R1kO/bQ==[/tex][p=align:center][tex=8.357x1.357]KL8XkO3xClX+ZKoVjS47eSwU3UUzbwIBmTUU5XJTM/0=[/tex]求下列复合关系.(1)[tex=2.786x1.214]XzRNdcOzSrvLVZHLjp7LMD71fRT67VBA6Zd1uTtpBa8=[/tex];(2)[tex=2.786x1.214]h+sgJJ+hO7O6atHnTmbPI3Q7/1cgdmNXsz+WDhMAsds=[/tex];(3)[tex=4.357x1.214]XzRNdcOzSrvLVZHLjp7LMPh7lTZBxYOZ3aFX2Q3W6CE=[/tex].
- 设[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立,已知[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]服从[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]上的均匀分布, [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]服入指数分布[tex=1.786x1.357]NAcaUWG0M+fOpH6/Gh1yyQ==[/tex] .试求[tex=6.643x1.357]y80Y546TKJ9w+MUm0oMHBg==[/tex],[tex=6.286x1.357]k/hzUMjV7geOFY7iA5ZJqQ==[/tex]的概率密度.