• 2022-06-03
    宇宙中两颗星体依靠万有引力相互绕转运动,距离保持为r,且质量不同,即m1不等于m2.以星球2为参考系,星球1的向心力F=4π^2*m(1)*r/T(1)^2,星球2的向心力F=4π^2*m(2)*r/T(2)^2,由牛顿第二定律得两个向心力相等,则推出m(1):m(2)=T(1)^2:T(2)^2,根据m(1)不等于m(2),所以T(1)不等于T(2),T是周期,所以在两个参考系中,同样的圆周运动,表现出的被参考对象的运动周期不同.为什么?