有 3 个箱子,第 [tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex] 个箱子中有 [tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex] 个白球, [tex=1.643x1.143]zGodLqPUR75EQYPmJNszZw==[/tex] 个黑球 [tex=4.357x1.357]8LCNLSudzW9COZpucBc+PA==[/tex].今从每个箱子中都任取一球,以 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 表示取出的 3 个球中白球个数, 则 [tex=2.357x1.0]joG/slU8FuzguPbLVKxXAA==[/tex][input=type:blank,size:6][/input],[tex=2.5x1.0]ocNvBfIQev22GSIbxdxiAA==[/tex][input=type:blank,size:6][/input].
举一反三
- 盒中有 3 个黑球、2 个白球、2个红球,从中任取 4 个球,以 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 分别表示取到黑球与白球的个数,求 [tex=3.857x1.357]YbF2ohlyA5KynPPilUI/TA==[/tex] .
- 一个袋子中装有 [tex=1.786x1.143]+JWM/sEBO49/oaEmZ4MdCQ==[/tex] 个球,其中 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 个黑球, [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 个白球, 随意地每次从中取出一球 (不放回),求前 [tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex] 次中恰好取 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 个黑球的概率.
- .盒中有 7 个球,其中 4 个白球,3 个黑球,从中任抽 3 个球,求抽到白球数[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望[tex=2.357x1.357]y0JP40XwxAEl4j7GgRfsFw==[/tex]和方差[tex=2.5x1.357]NiX30mld6g1YWcQAK1BcgQ==[/tex]。
- 箱中装有 6 个球,其中红球 1 个,白球 2 个,黑球 3 个. 现从箱中随机地取出 2 个球,设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为取出的红球个数, [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 为取出的白球个数.求[tex=4.357x1.357]i+DVPOZZfbtwzlk7qK4ILswxUyhq/D0S0zlG9E3ZL0o=[/tex]
- 用一个邻接矩阵存储有向图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex], 其第[tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex]行的所有元素之和等于顶点[tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex]的[input=type:blank,size:4][/input]。