证明当 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 充分大时,下边的不等式成立: [tex=4.857x1.286]wWyztZXIUtNRBoAMRZQlEfQuPhV2CgB0Ltcm3dRwmNU=[/tex]
举一反三
- 证明当 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 充分大时,下边的不等式成立: [tex=10.214x1.357]+C0otBVJoaiDQmNJgCsjP41fKXSL9qi37mCEfLxLb4w=[/tex]
- 证明:不等式[tex=4.143x1.143]V1cMVpAPlZC/oEIH8POnKKkri2N/1cnaxqDWfusMqZA=[/tex],等式仅在[tex=1.857x1.0]3eSlq+W5GTl4xGu7dhqzgw==[/tex]时成立.
- 证明当[tex=1.143x1.357]M7eFZhSCOUN37Yx3DlAzjQ==[/tex]很小时,近似式[tex=4.143x1.143]tVAA1SQqO770BQw37NjdZ0PJ5BVPda3IMkqkxn4H7yw=[/tex]成立:(即当[tex=2.071x1.0]Fi2OiSq+zhaJTNdXB7v8ZiiLNxDfOHdeaRgfouwng8U=[/tex]时误差是[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的高阶无穷小)
- 证明当[tex=1.143x1.357]M7eFZhSCOUN37Yx3DlAzjQ==[/tex]很小时,近似式[tex=5.571x1.357]U1wmHxOJGhB2b59DNNvZpYOhOyX6mXpIXspazozeO7Q=[/tex]成立:(即当[tex=2.071x1.0]Fi2OiSq+zhaJTNdXB7v8ZiiLNxDfOHdeaRgfouwng8U=[/tex]时误差是[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的高阶无穷小)
- 证明下列不等式:当x>0时,[tex=5.571x1.357]yPiUK5s9KWIySs4Vo4NOaA==[/tex]