举一反三
- 证明当 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 充分大时,下边的不等式成立: [tex=4.857x1.286]wWyztZXIUtNRBoAMRZQlEfQuPhV2CgB0Ltcm3dRwmNU=[/tex]
- 证明:不等式[tex=4.143x1.143]V1cMVpAPlZC/oEIH8POnKKkri2N/1cnaxqDWfusMqZA=[/tex],等式仅在[tex=1.857x1.0]3eSlq+W5GTl4xGu7dhqzgw==[/tex]时成立.
- 证明当[tex=1.143x1.357]M7eFZhSCOUN37Yx3DlAzjQ==[/tex]很小时,近似式[tex=4.143x1.143]tVAA1SQqO770BQw37NjdZ0PJ5BVPda3IMkqkxn4H7yw=[/tex]成立:(即当[tex=2.071x1.0]Fi2OiSq+zhaJTNdXB7v8ZiiLNxDfOHdeaRgfouwng8U=[/tex]时误差是[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的高阶无穷小)
- 证明当[tex=1.143x1.357]M7eFZhSCOUN37Yx3DlAzjQ==[/tex]很小时,近似式[tex=5.571x1.357]U1wmHxOJGhB2b59DNNvZpYOhOyX6mXpIXspazozeO7Q=[/tex]成立:(即当[tex=2.071x1.0]Fi2OiSq+zhaJTNdXB7v8ZiiLNxDfOHdeaRgfouwng8U=[/tex]时误差是[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的高阶无穷小)
- 证明下列不等式:当x>0时,[tex=5.571x1.357]yPiUK5s9KWIySs4Vo4NOaA==[/tex]
内容
- 0
证明下列不等式:当x>1时,[tex=5.571x2.357]cu8b01R+7uITdLa6NsPEW6TmtQGeN2pfZxFE3bC0pvs=[/tex]
- 1
证明当 [tex=1.143x1.357]M7eFZhSCOUN37Yx3DlAzjQ==[/tex] 很小时,下列近似式成立: (即当 [tex=2.071x1.0]Fi2OiSq+zhaJTNdXB7v8ZiiLNxDfOHdeaRgfouwng8U=[/tex] 时误差是 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 的高阶无穷小 )[tex=4.143x1.143]M5cWU45u+TMcr8Gf1E54zp8rtKViy8QUIcNRJIMrK1A=[/tex].
- 2
证明当[tex=1.143x1.357]M7eFZhSCOUN37Yx3DlAzjQ==[/tex]很小时,近似式[tex=4.143x0.929]8l5PILRLCy998s7R+K49znJGUB8TTu5/tr+AIGSWv4g=[/tex]成立:(即当[tex=2.071x1.0]Fi2OiSq+zhaJTNdXB7v8ZiiLNxDfOHdeaRgfouwng8U=[/tex]时误差是[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的高阶无穷小)
- 3
证明当[tex=2.357x1.286]m4e4zGHADczGKCutJ7tDYQ==[/tex]时,不等式[tex=3.214x1.286]Ivw459E9jKnHDyRIEoFXfA7bFwRKCF0Wy5QruTReQLs=[/tex]成立。
- 4
证明当[tex=1.143x1.357]M7eFZhSCOUN37Yx3DlAzjQ==[/tex]很小时,近似式[tex=6.357x2.143]G2QkHPbcf/R+bRTX0YnX96RpcK/VYgulBPNfn0ZfcSHEe8dnJiVxhLXQOoH5QvDl[/tex]成立:(即当[tex=2.071x1.0]Fi2OiSq+zhaJTNdXB7v8ZiiLNxDfOHdeaRgfouwng8U=[/tex]时误差是[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的高阶无穷小)