试作图 [tex=1.286x1.357]eI2hypHs4HeMsk2hgpDlVg==[/tex] 斜梁的剪力图、弯矩图和轴力图。[img=308x264]17a705462f4809d.png[/img]
受力分析如图 [tex=2.571x1.357]TriTDX4zC0yRMLXpCnJNjgDlbCjf9pTJU47M2PtV840=[/tex] 所示,利用平衡方程[tex=23.0x7.786]g9MaqFwjnZ3wOSESpZIavKkKKnNKwdB6PklklxHuPt8GrA3DySIxueqv5VggXibfF6ZLOQX58jU5rSGVpTtKfNaoJP0Vt07mdST7uXd+QH8FoO1dv8Fs2DzbE0quHkTG4PIo43VyjJmnw8ed+QunebIq3mTaA4EVtdw6v32jO8xjdj8uVFF1IRkVuOCnWfEI3wSDooFLUw/uosjn7oH/DQMTg2+asPbUJgfbuKM7VZ1OZqF93DKqGap2EZd/XZHvTi4Tr0JKkfiQ7EtXb1owQfSypWfeznOlZe2jQYAnqd6sfWJYe3MLwEUbdwPz/5PtmMqUhMMaH4GQYLt4d98615GX2uXNp05y7o9O+vzVczjDL0cMZKrgeLH8fJwN9NywNACvgWU4FtrVXK5JUNWqPmifmWJtuSEF5N02MmPt3D4=[/tex]解得约束反力 [tex=18.071x1.357]pyNOSMwp1aGUBwpCt41gMcBayGNPtrr4GeHaThHrXm8H+AEaOlD3Bl28g21vBj6vyaKqslajl3Ya0ASpCV1DHlwxe8fSsiRjNEJ3hZcotskFqOucR6eTvaTDfYoBd5kW[/tex]从斜梁上截了一段长 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 的梁,作受力图,如图 [tex=2.571x1.357]ULweSV+kRvKUMW9r9hKx5v6k+khbS0jCWShZg+NerUg=[/tex] 所示。利用其平衡, 可列内力方程[tex=26.214x5.286]eSvHijT+9KHFkjytnvhjEueh1ZCFYcAu65C6JdT6UhbFC2zKOYPmw0l4F7Nar4Rb3aXZE43QOUw1ArzYojp5180cI2lirCpECG0XNU0JHWs8MqPyKJXWZe5OFbDkJ75UOe0bj7f88aVc3k70BqkoMWvJM9wUAdm5kqZgMy66JzUwFfZjp63v3VdvWOXahOJJwwDZjKocc7OaMkhdcqwEsZNWC14PtEr6w5U95wn7hIZuLT7tYVNnGSjlrJVKgJp+u2J9Lm0CG5r9N6gRRiz/fHmGTdRKQ7ex4p9Z2p2/FIcdiUzAtNFRwuIgKcxs9Luw2DlZCXFx8/cWWw+TcJkxQR3c3Fk6hpp1S/NAWLCwJxsVVJENOJAqlwS7YX1i2a1njAujZ6BciUice7toUcgSxnMFXaOi6jdeC2Z7LJMMxp0=[/tex]依据以上内力方程, 可作梁的轴力图、剪力图、弯矩图,分别如图 [tex=8.571x1.357]p/F+srVj6ChHtHxE+AXLXP+qo78AUi+BTT+st1SPwg0nmRL19TeL1vbcJ6AeH7/MsQgIy80dU1/y2zvD7SfN0w==[/tex] 所示。在梁的中点处,弯矩取极值, [tex=8.0x1.429]GOQhFXAyUXPUuzM6uH44OHQ8MkWQutf2AUUGgPlGL90=[/tex]。[img=531x503]17a7058480d4345.png[/img]
举一反三
- 试作图 [tex=1.357x1.357]fjWMaYcefEESw2uiWhETZw==[/tex] 折杆的剪力图、弯矩图和轴力图。[img=357x273]17a7058fd384e91.png[/img]
- 已知简支梁[tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex]的弯矩图如图(a)所示,试作此梁的剪力图和载荷图。[br][/br][img=537x220]17ac9a546334684.png[/img]
- 图示简支梁,剪力图、弯矩图形状是( )。[img=257x88]1802e14f2e31d78.png[/img] A: 剪力图水平线,弯矩图斜直线 B: 剪力图斜直线,弯矩图水平线 C: 无剪力,弯矩图水平线 D: 剪力图水平线,无弯矩
- 设已知如图所示各梁的载荷 [tex=0.643x1.0]gSWKSAtjuAhig1ykYkQFSA==[/tex] 、 [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex] 、 [tex=1.357x1.214]S+SopD/98AMSGH1gTuumQA==[/tex] 和尺寸 [tex=0.571x0.786]7G1MINzwputr5mgALyjQfA==[/tex]。[tex=1.286x1.357]fUsHguQYnwozeakcwqFP1g==[/tex] 列出梁的剪力方程和弯矩方程; [tex=1.286x1.357]BEB68bP4vOVk/XYYizw11w==[/tex] 作剪力图和弯矩图; [tex=1.286x1.357]H6tHfFjOZ3ZWdB4qPQ9Ocg==[/tex] 确定 [tex=2.714x1.357]HifwvDkWVLQ6km098UgI6g==[/tex] 及 [tex=2.857x1.357]JijxH9fMbVcnHQsFAE3Uvw==[/tex] 。[img=690x706]1796c6022e24b56.png[/img]
- 作图题 3-5(2) 所示多跨静定梁的弯矩图和前力图。[img=284x188]179d0b4c04fbe27.png[/img]
内容
- 0
如图 [tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex] 所示梁的 [tex=2.0x1.0]hYBAALM+V4PV1D5W5pIDqA==[/tex] 常量,试作梁的剪力图和弯矩图。
- 1
已知梁的弯矩图c所示,试作梁的载荷图和剪力图。[img=162x73]17d2e66b849e419.png[/img]
- 2
如图[tex=1.786x1.143]67YZS7nX0GaOoxtmen5p1Q==[/tex]所示各梁,试利用弯矩、剪力和载荷集度间的关系作剪力图和弯矩图。[img=414x501]17cfad2bb912fd3.png[/img]
- 3
如图[tex=2.357x1.143]cOTLluiGiRZkIt0nAmZbdg==[/tex] 所示,简支梁受到按线性规律变化的分布载荷作用,试作其剪力图和弯矩图。[img=439x570]17cfa42e3dd18c9.png[/img]
- 4
试作图示多跨静定梁的弯矩图和剪力图[img=636x169]17ac70f56c0fc5f.png[/img]