以下关于感知机说法错误的是:
A: 感知机是二分类的线性分类模型,属于非监督学习算法
B: 只要参数设置得当,感知机理论上可以解决各种分类问题
C: 感知机的训练过程可以看成是在误差空间进行梯度下降
D: 感知机学习算法是正确分类驱动的
A: 感知机是二分类的线性分类模型,属于非监督学习算法
B: 只要参数设置得当,感知机理论上可以解决各种分类问题
C: 感知机的训练过程可以看成是在误差空间进行梯度下降
D: 感知机学习算法是正确分类驱动的
举一反三
- 以下关于感知机说法正确的是: A: 在batch learning模式下,权重调整出现在学习每个样本之后 B: 只要参数设置得当,感知机理论上可以解决各种分类问题 C: 感知机的训练过程可以看成是在误差空间进行梯度下降 D: 感知机的激励函数必须采用门限函数
- 关于感知机(perceptron),下列说法错误的是 A: 感知机由Rosenblatt于1957年提出,是神经网络的基础 B: 感知机是二分类的线性分类模型,属于有监督学习算法 C: 感知机是二分类的线性分类模型,属于无监督学习算法 D: 感知机的预测是用学习得到的感知机模型对新的实例进行预测的,因此属于判别模型
- 关于感知机模型,下列说法错误的是( ) A: 感知机属于无监督学习算法 B: 感知机属于判别模型 C: 感知机由Rosenblatt于1957年提出,是神经网络的基础 D: 感知机是二分类的线性分类模型
- 感知机是一种训练线性分类器的算法
- 以下关于感知机的说法错误的是 。 A: 感知机实际上是通过构造超平面实现对不同点的分类 B: 感知机中第一次引入了学习的概念,一定程度上模拟了人脑的学习功能 C: 单层感知机模型也适合解决线性和非线性问题 D: 感知机与神经元模型最大的区别在于感知机模型可以对训练样本进行学习