举一反三
- 某地区 18 岁女青年的血压 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] (收缩压,以 mm - Hg 计)服从 [tex=5.714x1.571]Iwx/CRM2Vk9ewcgiuGRiLpmSY09CBavsc9ApMUejeEI=[/tex] 试求该地区 18 岁女青年的 血压在 100 至 120 的可能性有多大?
- 设随机变量 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 服从二项分布,已知 [tex=8.857x1.286]i2Z5Uf6DCEKk3kUuqFJqMBMPcT40TtxFiK2OLjQwcas=[/tex] , 求 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 的分布律
- 设矩阵[tex=10.286x3.929]r+tiAx6ClSaeP7cZbqpjmU2jA8OfocZwi1HjRH+Ylr2XvckDNXltPwV5JFJ+Ly07gOR43TRiiKsRQVHTf91QqbOE+NRimz/nYtjLvyaMLTEnfTdtd9wtRT5d840Dj9z+[/tex],矩阵[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]满足[tex=7.643x1.286]mdLdzaMkJ0bZ1Q+PvHfNXvayLD3A1ZlECG2+4G0qDxY=[/tex],试求矩阵[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]。
- 设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立,且[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从数学期望为150 , 方差为9的正态分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]服从数学期望为100,方差为16的正态分布,求[tex=7.5x1.357]JgfvMEzlJt4TFydcPQ2gaw==[/tex],[tex=10.286x1.357]/kMGdCxDBv+iw/Cr+hQeUnIAq7x/u//czEtqpBiPB/0=[/tex]。
- 某地区18岁女青年的血压X(收缩压,以mm-Hg计)服从N(110,12).试求该地区18岁女青年的血压在100至120的可能性有多大?(注:Φ(0.83)=0.7967) A: 0.2956 B: 0.4832 C: 0.5934 D: 0.7203
内容
- 0
设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的密度函数为[tex=10.357x2.429]V1NbOxjLQIMer1X4KjPmKDnu+xjEVm1jM8mDRV1OGRYZAzUAK2Hr4HSITEQ/lf89FxYsgozchSFqnZWxtAJlqw==[/tex],以[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]表示对[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的三次独立重复观察中事件[tex=4.571x1.286]6SDll7mJhj+IZin8uG8SrRYmOqkqkVazP5NBZMDw8Kc=[/tex]出现的次数,试求[tex=4.286x1.286]gXlCFjwaP/Zbzj7a+Oo5dg==[/tex] .
- 1
设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从[tex=2.143x1.286]dboSCjP3Fn5+xkkJFCNE+A==[/tex]分布,证明: “[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关”与“[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立”等价.
- 2
设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个相互独立的随机变量,[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]在[tex=2.929x1.286]kvrkODQf0L3CKREOEdSkuA==[/tex]上服从均匀分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的概率密度为[tex=10.571x2.429]DRJq+C1mHjswrEZ8FtvX7HNGAPrBLJ6gzRGG2ilTN7MM55jZEydQmT0AUl0Qb5hAT5k9ols3J/KpgflWFdX4TQ==[/tex],求:(1)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合概率密度;(2)[tex=4.714x1.286]dbgFLPFxgdKKXnbc/gnthjs3iie6rgn/UEwrXH27vHI=[/tex] .
- 3
设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从区间[tex=2.143x1.286]l9DYubvhJSmV7cTo/ad4fA==[/tex]上得均匀分布,(1)求[tex=3.357x1.286]s8MxvfWC9l8tAzB+vk6hQg==[/tex]得密度函数;(2)[tex=4.286x1.286]f4K1gTBjsCQR6d//JYB5/A==[/tex] .
- 4
设随机变量 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 与 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 相互独立, [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 服从正态分布 [tex=3.929x1.286]N5dq4BwkTdWMAb0OmXWoEaQHcjMspfC0l4+u6bRl6uAvEVUQUcSxPV1hL5aXeKrf[/tex], [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 服从均匀分布 [tex=3.857x1.286]oINv2OUrkfWf54e8Ht2lD1iv2R1pi2JiMcP1OIfioeI=[/tex] , 求 [tex=4.929x1.286]bstb6Acm/GnARrPc8f1uPw==[/tex] 的密度函数.