In the following cantilever beam, the ( ) of the cross-section C and B is different.[img=617x199]1803a0fa75c83b4.jpg[/img]
A: bending moment M
B: shear force V
C: deflection v
D: slope angle [img=9x19]1803a0fa7e46ed5.png[/img]
A: bending moment M
B: shear force V
C: deflection v
D: slope angle [img=9x19]1803a0fa7e46ed5.png[/img]
举一反三
- In the following cantilever beam, the ( ) of the cross-section C and B is different.[img=540x190]1803a365910cafa.png[/img] A: Slope angle θ; B: Shear force Fs; C: Deflection y; D: Bending moment M.
- In order to determine the slope and displacement of a beam by integration, it is important to use the proper signs for M, V or w. Positive deflection v is ( ) and as a result, the positive slope angle [img=9x19]17de8338539dd00.png[/img] will be measured ( ) from the [img=11x14]17de83385e83d59.png[/img] is positive to the ( ). A: upward, counterclockwise, right B: upward, counterclockwise, left C: downward, clockwise, right D: upward, clockwise, left
- The cantilever beam shown here is subjected to two equal and opposite couples,for the section B( ).[img=414x136]1803a25c3173b7f.jpg[/img] A: The deflection is zero, the angle of rotation is not zero B: The deflection is not zero, the angle of rotation is zero C: Deflection and angle of rotation are both not zero D: Both deflection and angle of rotation are both zero
- If the beam is subjected to a bending moment of M = 15 kN.m, the maximum bending stress inthe beam is ( ). [img=443x401]1803275dfac22cc.jpg[/img] A: 5.88 MPa B: 3.92 MPa C: 1.96 MPa D: 7.84
- 如图所示,正六面体边长为a,[img=54x22]1803b20e19c9709.png[/img],[img=79x27]1803b20e222d9a4.png[/img]则[img=18x22]1803b20e2a0b2e7.png[/img]、[img=18x22]1803b20e32270c7.png[/img]对z轴的矩为( )[img=509x547]1803b20e3d4da79.png[/img] A: Mz(F1)= -Fa, Mz(F2)=0 B: Mz(F1)=0, Mz(F2)=Fa C: Mz(F1)=Fa, Mz(F2)=Fa D: Mz(F1)=Fa, Mz(F2)=0