证明: [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的代数元当且仅当 [tex=0.929x1.214]cCzS/cTqVNRb3hzF7/9UBw==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的代数元.
举一反三
- 证明:设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的代数元, [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的一个首一多项式, 则下列条件等价:(1) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 在域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的极小多项式;(2) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上不可约, 且 [tex=3.429x1.357]+nzvPBU74mdetNBw41Ue1A==[/tex](3) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为根的次数取小的非零多项式;(4) 如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上任意一个以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为根的多项式, 则 [tex=4.857x1.357]+3zmuKty1AhSMDB3tNdbXzDDg/gxGAj+UD6ur3wtHjE=[/tex]
- 设[tex=4.786x1.214]hSQMLcBhgNFENgN022zKCw==[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上不可离元. 证明:[tex=1.071x1.0]d56LjdMUBXKbC4f6ujCFMQ==[/tex]也是[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上可离元.
- 求证: 域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]是有限域当且仅当[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]的乘法群[tex=1.214x1.071]6fYgj+1cuIkoM1Z53YlA3Q==[/tex]是循环群.
- 设域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]不是完全域且[tex=4.286x1.214]e9dgkRD4ubLrCzzjIX5OfeFJ1rfmgAh98WV2Rfi/BIM=[/tex]证明:[p=align:center][tex=8.0x1.5]8VpVp2U6VGixBpvDPO6wdFFdZ1Zh5NEQ2vbJpM7p7AI4fqr9DgYdhAg464wa/ehz[/tex]在域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上不可约的充要条件是,[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是不是[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]中任何元素的[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]次幂.
- 设[tex=4.857x1.214]wRbY2rsX3hsnG7bWPPLOLdOPUOps7uf9XLNyeCrKtV8=[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上不可离元. 证明:若[tex=4.857x1.357]3yFPsW2/nDLpcI2p6eAw/NpaPOeugO+V4WWwp6IBo7s=[/tex],则 [tex=0.929x1.0]NcHr2jMtiiHYOWdCIwFGZg==[/tex]也是[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的不可离元.