设域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]不是完全域且[tex=4.286x1.214]e9dgkRD4ubLrCzzjIX5OfeFJ1rfmgAh98WV2Rfi/BIM=[/tex]证明:[p=align:center][tex=8.0x1.5]8VpVp2U6VGixBpvDPO6wdFFdZ1Zh5NEQ2vbJpM7p7AI4fqr9DgYdhAg464wa/ehz[/tex]在域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上不可约的充要条件是,[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是不是[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]中任何元素的[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]次幂.
举一反三
- 如图,[tex=3.143x1.286]REaUoNxha/GBn3DE8cgfDA==[/tex]是边长为4的正方形,[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]、[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]分别为[tex=1.571x1.286]cHJ4KDAad01mWuGaiQQpfA==[/tex]、[tex=1.571x1.286]hOo99m7YJCAnVf2cQGX8dQ==[/tex]的中点,则阴影部分的面积为[img=163x138]17e6c55620e728c.png[/img] A: 4 B: 5 C: 6 D: 7 E: 8
- 证明:设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的代数元, [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的一个首一多项式, 则下列条件等价:(1) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 在域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的极小多项式;(2) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上不可约, 且 [tex=3.429x1.357]+nzvPBU74mdetNBw41Ue1A==[/tex](3) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为根的次数取小的非零多项式;(4) 如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上任意一个以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为根的多项式, 则 [tex=4.857x1.357]+3zmuKty1AhSMDB3tNdbXzDDg/gxGAj+UD6ur3wtHjE=[/tex]
- 设 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 是特征为 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 的域, [tex=7.643x1.357]btud4JFbMuvgYfQLcEnwE5avp8UnpnuLTNhSRnnni64=[/tex] 证明 : [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 中不可约或 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 中分裂.
- 假设 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 是一个四个元素的域. 证明:(1) [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]的特征是 2 ;(2) [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]的不等于 0 和单位元的两个元都满足方程 [tex=3.929x1.357]n/e9mCKNm2GRMd1tVtaOAw==[/tex]
- 证明: [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的代数元当且仅当 [tex=0.929x1.214]cCzS/cTqVNRb3hzF7/9UBw==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的代数元.