什么是托宾的[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex],它与投资有什么关系?
举一反三
- 什么是托宾值?它与投资有什么关系?
- 命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]或[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]或两者均为假时为真,而当[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和 [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为真时为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]只在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为假时为真,否则为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]和[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]分别表示为[tex=1.786x1.357]db85pjiUlp6DuSz3t/lTzw==[/tex]和[tex=2.071x1.214]vV5XP+CRmbDUGTiYqjNqnw==[/tex]。只涉及命题变元[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]的复合命题有多少不同的真值表?
- 什么是托宾[tex=0.5x1.286]SIrTd7CGXw9GcBP//JIn6w==[/tex]理论?
- 命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]或[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]或两者均为假时为真,而当[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和 [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为真时为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]只在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为假时为真,否则为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]和[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]分别表示为[tex=1.786x1.357]db85pjiUlp6DuSz3t/lTzw==[/tex]和[tex=2.071x1.214]vV5XP+CRmbDUGTiYqjNqnw==[/tex]。证明:[tex=1.786x1.357]db85pjiUlp6DuSz3t/lTzw==[/tex]和[tex=1.286x1.357]1iCPfmaumBwudqtdwCwPlQ==[/tex]等价
- 命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]或[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]或两者均为假时为真,而当[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和 [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为真时为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]只在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为假时为真,否则为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]和[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]分别表示为[tex=1.786x1.357]db85pjiUlp6DuSz3t/lTzw==[/tex]和[tex=2.071x1.214]vV5XP+CRmbDUGTiYqjNqnw==[/tex]。证明[tex=2.071x1.214]vV5XP+CRmbDUGTiYqjNqnw==[/tex]逻辑等价于[tex=3.571x1.357]vxXf8ii7O1D1363SuS1cCA==[/tex]