对方程佳[tex=5.714x1.357]U7O36eV5oVbPDkcuu4CinA==[/tex] 用迭代法求根,若化成[tex=3.929x1.143]iBKjixhR4VZt1dvfoGvfkQ==[/tex] ,则问迭代是否收敛?若化成[tex=2.857x1.143]ZUoYdDGm1u6QTFsiBtFTFA==[/tex]进行迭代,问是否收敛?
举一反三
- 当初值取为下列各值时,用下山Newton迭代求解方程组[tex=4.0x2.5]dNwI4QQHzkRW+YaFiDfW1oBRtgZkzn2mMQJHjSrMKfo=[/tex]是否收敛?若收敛,收敛于哪一个根?(1)[tex=3.786x1.214]g08OSnrI31gsluefx1mMOQ==[/tex](2)[tex=3.0x1.214]CR5k2B3uqARAFgb6IawNDA==[/tex]
- 求解下面的不动点方程,若其迭代不收敛,请加以改造,给出一个收敛的迭代格式:[tex=8.357x2.357]TrWYIsxOvUS0q5ix0w9Zi1G8mWP3paAJALg7pQGHPlY=[/tex],[tex=3.643x1.357]8ZL7R8aDLzbm8ku4PlHTCg==[/tex],[tex=4.214x1.143]QO3poN0sXSBcSY4UZjqZYg==[/tex].
- 用简单迭代法求下列方程的根,当满足 [tex=9.714x1.5]br9mJdlToWEg/qNFvnGMo1eyHm2XZvRNjIWcAtf8ueYJLEZI9AvHmjXkJ2zhEhorVSSPYvd0E3lQ5kDzjmVH4GVjuq+pjmqouREo7QJL2/g=[/tex]时结束迭代,并说明迭代收敛的理由:[br][/br][tex=6.286x1.143]WFt418DiXjBBVYUAaYtCgLCFD5OfWGWjcXtwT7yPxak=[/tex]
- 设方程组[tex=3.071x1.286]RiVFFESwOAy7k5TCrH9cQA==[/tex]的系数矩阵为[tex=9.286x3.643]bbdCqlNP+y1EQGLEihsRoy+26gSBNuhC/EXLzunV5K8wb6ZghcRyAbqD5dWS0aAGjv8jVUe8L6hRJRhPpYpNJawcrN1CuU+8zxsxxFbCCXZS+RJ8Yj3FcqFzewZh7hg9[/tex],[tex=8.5x3.643]505jwrPa5NsE0HKXPoHdOv4gduqoACd7kZHOAZzcEzVg6rV2e9COBTfj6v26NBeT78cmqJA6mP9bwGFHI/wT0CNua4ON1jHNmzdYhGmTITVmPSptAeMcrbWF/swRGvQa[/tex],证明: 对[tex=1.143x1.286]XckFLd1YsfGiH9ZbdxcxOw==[/tex]来说, [tex=2.786x1.286]R12Q6m2AFlaUmeayebpPYQ==[/tex]迭代不收敛,而[tex=2.5x1.286]OdvBs0I8IJypfpeBxlV/Sg==[/tex]迭代收敛;而对[tex=1.143x1.286]AcFumj5DdQWZJdWAfuXvZg==[/tex]来说,[tex=2.786x1.286]R12Q6m2AFlaUmeayebpPYQ==[/tex]迭代收敛,而[tex=2.5x1.286]OdvBs0I8IJypfpeBxlV/Sg==[/tex]迭代不收敛.
- 用迭代法求解下述线性方程组:[tex=10.786x3.929]7EJHVCtO2IWq3KpdB+jQsnkb7DW+/SpRiPSBe5KwiaaxWfR5Lfq+Hi077Ucj0weF+ETXx9iu3nod7pl1UtUTry1YLTMg4D3Q/7VqU783aaYzA01CIa3Go0XgfmE1s8OUKLm/vzBGUf65MosN7Vb/fPAtPy5Uvea+4g7U8ByYs+7lD0v8XexZLXJbRj2PcLWS[/tex](1)分别写出雅可比迭代、GS迭代、SOR迭代([tex=3.214x1.0]MFgkChukcohooa6iaLcR2w==[/tex]) 的迭代格式;(2) 判断上述三个迭代格式的收敘性, 并说明理由;(3) 用收敛的迭代格式分别计算方程组的解,要求满足[tex=11.786x2.357]3kRqjnXEHaOzBR9r8vWb96A+vNOgwLg56qvrp/8CcyYDvY5AywTfd/xCUxv2vjti2Sjf944sZSG71Eobmf77uMVDntSSsxV01gIHTc+vDUM=[/tex].