设\( A \), \( B \)为 \( n \)阶方阵,且\( {A^T} = A,{B^T} = - B \) , 则 \( {(AB - BA)^T} = AB - BA \).
举一反三
- 设A、B为同阶方阵,则必有(). A: ∣A+B∣=∣A∣+∣B∣ B: AB=BA C: (AB)T=ATBT D: ∣AB∣=∣BA∣
- 设A,B的n阶方阵,以下命题正确的是。 A: |A+B|=|A|+|B| B: (AB)T=ATBT C: |AB|=|BA| D: |λA|=λ|A|
- 设 \( A \)为 \( m \times n \)矩阵, \( B \)为 \( n \times m \)矩阵,则下列结论中不正确的是( ) A: \( {\left( {AB} \right)^T} = {B^T}{A^T} \) B: \( \left| {AB} \right| = \left| {BA} \right| \) C: \( tr\left( {AB} \right) = tr\left( {BA} \right) \) D: \( {A^T}A,\;B{B^T} \)均为\(n\)阶对称阵
- 设A,B,C,均为n阶方阵,且AB=BA,AC=CA,则ABC=( ).
- 设A和B为n阶方阵,则必有______ A: |A+B|=|A|+|B| B: AB=BA C: |AB|=|BA| D: (A+B)-1=A-1+B-1