• 2022-06-01
    6.5设有论域U={u1,u2,u3,u4,u5}并设F、G是U上的两个模糊集,且有F=0.9/u1+0.7/u2+0.5/u3+0.3/u4G=0.6/u3+0.8/u4+1/u5请分别计算F∩G,F∪G,﹁F。
  • 解:F∩G=(0.9∧0)/u1+(0.7∧0)/u2+(0.5∧0.6)/u3+(0.3∧0.8)/u4+(0∧1)/u5=0/u1+0/u2+0.5/u3+0.3/u4+0/u5=0.5/u3+0.3/u4F∪G=(0.9∨0)/u1+(0.7∨0)/u2+(0.5∨0.6)/u3+(0.3∨0.8)/u4+(0∨1)/u5=0.9/u1+0.7/u2+0.6/u3+0.8/u4+1/u5﹁F=(1-0.9)/u1+(1-0.7)/u2+(1-0.5)/u3+(1-0.3)/u4+(1-0)/u5=0.1/u1+0.3/u2+0.5/u3+0.7/u4+1/u5

    内容

    • 0

      【单选题】已知f 1 (t)=tε(t),f 2 (t)=ε(t)-ε(t-2)试求y(t)=f 1 (t)*f 2 (t-1)*δ’(t-2) A. (t-3)u(t-3)-(t-5)u(t-5) B. (t-2)u(t-2)-(t-5)u(t-5) C. (t-3)u(t-3)-(t-4)u(t-4) D. (t-3)u(t-2)-(t-5)u(t-3)

    • 1

      设z=f(u),而u=u(x,y)满足u=y+xφ(u)。若f和φ有连续导数,u存在偏导数,且xφ′(u)≠1,证明:∂z/∂x=φ(u)∂z/∂y。

    • 2

      对s、p、d、f原子轨道进行反演操作,可以看出它们的对称性分别是() A: u,g,u,g B: g,u,g,u C: g,g,g,g

    • 3

      【单选题】f(t)=u(t)-u(t-1),那么f(t)*f(t)=()。 A. t[u(t)-u(t-1)]-(t-2)[u(t-1)-u(t-2)]; B. u(t)t-(t-2) [u(t-1)-u(t-2)]; C. t[u(t)-u(t-1)]- [u(t-1)-u(t-2)]; D. [u(t)-u(t-1)]- [u(t-1)-u(t-2)].

    • 4

      设函数f(u)具有二阶连续的导数,而则 A: f’’(u)e2x B: f’’(u)ex C: -f’’(u)e2x D: -f’’(u)ex