• 2022-06-01
    将下列各函数展开成含z的幂级数或双边幂级数,并指明函数的收敛范围:[tex=5.143x2.643]oTycNkqsw/9PYixNe16fe5qfaodpSYKgoz4UwHbKOJckAg6FHCrIAhk/inAj0yzZ[/tex]
  • 解我们先将[tex=2.143x2.357]x6zmyxOp7TNR2h9KLPSWSrjDscZOcB1BMBXYR7m1hEg=[/tex]展开成幂级数;[tex=11.786x3.286]x6zmyxOp7TNR2h9KLPSWSm0Sh2309kzsYAKhtlBK/ZMtPsN+D34m+7mzgHFyEfkJYgpv3XVBlRwr/H1zo1K2pqyw/B4CVdfBQXpIY7jWrnFoUu6reDrdi5WwgqpmXG6W[/tex]于是[tex=17.286x10.0]zpHJv+gSLG6SI97RZzZVKNfaTbpSaJUBCCj0kOaiB9TjQXNdhuCNmgcBXzMbT+bFHc3BTdFdpti4ifzPxHC7HMq4Dwq9+s7sc05yTYCHdveDzQLM3Q3eeeZUHQwqfaNhTXPm3nABqaNz96mJiXszG3yAcm2lJxJFNKx79xrXMDaIlMyAtoGFwaOlsDlZyHdJC4oGL45ywtuZPb9xnQRmxZ+dYp6HCq6i1w02E2FMTM0uOTAaL0ttqnKwU52ErUAtjZNjjq3guoPxlKNLzZ+Me5J83UptpShfqNHE8jsU+EKN8KSi6+K/5rBc1fqpCJmZp5Og0EiF8ys14V5lrK7b/3qLH5AOOmbLNMWP4raC4FE=[/tex]利用比值判别法可知,收敛半径[tex=18.357x2.786]jW6qq69LNaWr4UwQKDc4D+pJ4sRvcK0DaLlqea8fihm7R1eXhtI61jQF3Z6hLt6aUCGRfvHt718EnlHGNe13Ng3WCX3IYHxpKfQF4ree4rvNz3ysAn12tZsnjjyvb5/posoJcjw6Fx6js/kT760luOS+eFdag7HOINmhQ9wqgBlFg7ccCg6sgXYKFjFaz3do[/tex]即原复函数在整个开复平面上收敛.

    内容

    • 0

      将此函数展开成幂级数,并求其收敛域:[tex=5.071x1.5]P3tWNXBkvByPBxWa5Z6mQyg1i+litlf9uum6PqxGxT8=[/tex]

    • 1

      将函数 [tex=6.929x1.357]IrmQ763Q7kQSEFKtKnHftk7LQnkw9BMcMrN0RGZjAYo=[/tex] 展开为 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 的幂级数,并确定收敛区间。

    • 2

      将下列函数展开成麦克劳林级数,并求其收敛域:[tex=8.214x2.357]Uvh5Koks4Vyfe25VcsYap0hWzK55mMBnfoyvRl8kydUgq7k32QXKwVr5c0wMWcVN[/tex]

    • 3

      将下列函数展开为指定的Fourier级数.[tex=5.143x2.143]65STRfmeJpsBGxWEnjmP0kX8xuXtOB6OBcoykUtzIiU=[/tex],[tex=3.929x1.357]fHypTF8qEraADhqFVLuxbQ==[/tex]展开成正弦级数.

    • 4

      把函数[tex=9.857x1.286]5In7Vj3JWAPP5IRSH273Grq7nLBNtPEXElKRub1wCy6mfhBAZN6c5xPb1maxCN57[/tex]展开成[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]的幂级数,并求其收敛域 .