已知\( y = \tan x \),则\( dy \)为( ).
A: \( \tan xdx \)
B: \( \cos xdx \)
C: \( {\sec ^2}xdx \)
D: \( \sin xdx \)
A: \( \tan xdx \)
B: \( \cos xdx \)
C: \( {\sec ^2}xdx \)
D: \( \sin xdx \)
举一反三
- 已知\( y = \cos x \),则\( dy \)为( ). A: \( \cos x \) B: \( {\rm{ - }}\sin x \) C: \( \cos xdx \) D: \( {\rm{ - }}\sin xdx \)
- 已知\( y = \tan x \),则\( y' \)为( ). A: \( - \cos x \) B: \( - \sin x \) C: \( {\sec ^2}x \) D: \( \sec x \)
- 已知\( y = \sin (2 + \tan 3) \),则\( y' \)为( ). A: 0 B: \( \cos (2 + \tan 3) \) C: \( \tan 3\cos (2 + \tan 3) \) D: \( {\sec ^2}3\cos (2 + \tan 3) \)
- \( \int {\sec xdx} \)=( )。 A: \( \ln \left| {\csc x + \tan x} \right| + C \) B: \( \ln \left| {\sec x + \cot x} \right| + C \) C: \( \ln \left| {\sec x + \tan x} \right| + C \) D: \( \ln \left| {\csc x + \cot x} \right| + C \)
- \(\int { { {\tan }^{10}}x { { \sec }^{2}}xdx}\)=( ) A: \(-\frac{1}{11} { { \tan }^{11}}x+C\) B: \(\frac{1}{11} { { \tan }^{11}}x+C\) C: \(\frac{1}{11} { { \cot }^{11}}x+C\) D: \(-\frac{1}{11} { { \cot }^{11}}x+C\)