曲线[tex=4.857x1.429]thFzjmtid6x+sNvF8isdLg==[/tex]在点[tex=4.786x1.286]YMPN41yy/5oojCCA2aGjJCzkrm99P/SvifA0gGRIaag=[/tex]处的切线方程为:
A: 16x-4y-17=0
B: 16x+4y-31=0
C: 2x-8y+11=0
D: 2x+8y-17=0
A: 16x-4y-17=0
B: 16x+4y-31=0
C: 2x-8y+11=0
D: 2x+8y-17=0
举一反三
- 双曲线x^2/16-y^2/9=1的渐近线方程为() A: y=±16x/9 B: y=±9x/16 C: x/3±y/4=0 D: x/4±y/3=0
- 有代码片段:function f(y) {var x=y*y;return x;} for(var x=0;x< 5;x++) {y=f(x);document.writeln(y);}输出结果是( )。 A: 0 1 2 3 4 B: 0 1 4 9 16 C: 0 1 4 9 16 25 D: 0 1 2 3 4 5
- 设\(D = \left\{ {(x,y)\left| { { x^2} + {y^2} \le 4,x \ge 0,y \ge 0} \right.} \right\}\),则\(\int\!\!\!\int\limits_D {(x + y)} d\sigma = \) A: \(0\) B: \( { { 8} \over 3}\) C: \( { { 16} \over 3}\) D: \( { { 32} \over 3}\)
- 应用Matlab软件计算行列式[img=110x88]17da5d7b00219d6.png[/img]为( ). A: x^2 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 B: x^3 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 C: x^4 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 D: x^5- 6*x^2*y^2 + 8*x*y^3 - 3*y^4
- 求解常微分方程初值问题[img=224x61]1803072f6b2a05a.png[/img]应用的语句是 A: DSolve[2y[x]y"[x]==1+(y'[x])^2,y[0]==1,y'[0]==0,y[x],x B: DSolve[{2y[x]y" [x]==1+(y'[x])^2,y[0]==1,y'[0]==0},y[x],x] C: DSolve[{2y[x]y" [x]==1+(y^' [x])^2;y[0]==1;y'[0]==0},y[x],x] D: DSolve[{2yy"==1+(y^' )^2&&y[0]==1&&y'[0]==0},y[x],x]