王老师要教学正方体平面展开图一课,请你帮她为学生准备适合的教学媒体()。
A: 正方体纸盒
B: 利用几何画板制作正方体展开图动画
C: 正方体框架
D: 正方体木块
A: 正方体纸盒
B: 利用几何画板制作正方体展开图动画
C: 正方体框架
D: 正方体木块
A,B
举一反三
- 至少用()个小正方体能拼成一个大的正方体。
- 至少用( )个小正方体能拼成一个大的正方体。 A: 2 B: 3 C: 8 D: 10
- а-Fe属于晶格,γ-Fe属于晶格() A: 面心正方体晶格、体心正方体晶格 B: 体心正方体晶格、面心正方体晶格 C: 面心立方体晶格、体心立方体晶格 D: 体心立方体晶格、面心立方体晶格
- 3维正方体有8个顶点,12条棱,6个面.若棱长为a,它的体积[tex=2.929x1.429]lvLbO+dQKnChgEkVM0tdaQ==[/tex],面积[tex=3.5x1.429]VInkLAAfbnR8TgpNmtToIw==[/tex]为了一.致,可将2维空间的正方形规范地称作2维空间的正方“体”,原正方形的边成为这个正方“体”的“面”,“面”与棱重合.2维.空间正方“体”有4个顶点,4条棱,4个“面”.若棱长为a,它的“体积[tex=2.929x1.429]EjNXqC1URGjz4BBmLyGbhw==[/tex]"面积[tex=3.071x1.214]eJQDaPaqcljJKHxXKcUrXA==[/tex]同样,1维空间的- -条线段可称作1维空间的正方“体”,则“体”与梭重合,原线段的顶点成为这个正方“体”的“面”,即“面”与顶点重合.1维空间正方“体”有2个顶点,1条棱,2个“面”.若棱长为a,它的“体积[tex=3.0x1.429]gnvAfGgYld3BZyCk9VETmw==[/tex]面积[tex=2.571x1.214]9Y6jFk0SvZ7bN0z2WiPpyg==[/tex]对k维空间正方体,用递归方法求出它的顶点数、棱数和面数;若棱长为a,求它的体积[tex=1.0x1.214]PQtKs/Jji+Up7UH1owU3MQ==[/tex]和面积[tex=1.0x1.214]NI+R27zscgTK7aPLKyu1OA==[/tex]
- 表面都是由若干个平面所围成的几何形体,称为()。 A: 曲面体 B: 多面体 C: 正方体 D: 平面体
内容
- 0
3维正方体有8个顶点,12条棱,6个面.若棱长为a,它的体积[tex=2.929x1.429]lvLbO+dQKnChgEkVM0tdaQ==[/tex],面积[tex=3.5x1.429]VInkLAAfbnR8TgpNmtToIw==[/tex]为了一.致,可将2维空间的正方形规范地称作2维空间的正方“体”,原正方形的边成为这个正方“体”的“面”,“面”与棱重合.2维.空间正方“体”有4个顶点,4条棱,4个“面”.若棱长为a,它的“体积[tex=2.929x1.429]EjNXqC1URGjz4BBmLyGbhw==[/tex]"面积[tex=3.071x1.214]eJQDaPaqcljJKHxXKcUrXA==[/tex]同样,1维空间的- -条线段可称作1维空间的正方“体”,则“体”与梭重合,原线段的顶点成为这个正方“体”的“面”,即“面”与顶点重合.1维空间正方“体”有2个顶点,1条棱,2个“面”.若棱长为a,它的“体积[tex=3.0x1.429]gnvAfGgYld3BZyCk9VETmw==[/tex]面积[tex=2.571x1.214]9Y6jFk0SvZ7bN0z2WiPpyg==[/tex]从度量的角度分析,为什么数学上给出[tex=2.571x1.214]9Y6jFk0SvZ7bN0z2WiPpyg==[/tex]?
- 1
笔筒是一个( )体。 A: 长方体 B: 正方体 C: 圆柱体 D: 方体
- 2
中国大学MOOC: 马氏体的晶体结构是体心正方。( )
- 3
高碳马氏体的晶体结构属体心正方晶格
- 4
如图,这是一个正方开体的展开图,则号码2代表的面所相对的面的号码是( )