• 2022-06-11
    设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为连续函数,又[tex=7.286x2.643]ohMuAAUO8tbfC4KGY2AtFrExZMK4JIwCs97TjEC2HbI=[/tex]证明:若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 为偶函数,则 [tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]为奇函数.
  • 举一反三