举一反三
- [img=271x219]179c65de395ce2b.png[/img]在题所示机构中,如已知转动副[tex=2.5x1.286]2RUiDci9WF8R0kLIZXKikQ==[/tex]的轴颈半径为r及当量摩擦系数[tex=0.857x1.214]DNy5UJaATxX9Ea607tS27Q==[/tex],且各构件的惯性力和重力均略去不计,试作出各运动副中总反力的作用线。
- 图(a) 所示起重机在连续梁上,已知[tex=4.143x1.214]iI2wIEmq+gu2oraEYzpFsA==[/tex],[tex=4.143x1.214]x/NOrlUEXGXZLYNQQp6TPA==[/tex],不计梁质量,求支座 [tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]、[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]和[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]的反力。[img=378x282]179b1d368b0b737.png[/img]
- [img=388x190]179c6a3009aacc4.png[/img]图所示曲柄滑块机构中,已知:各构件尺寸,各转动副轴颈半径[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]及其当量摩擦系数[tex=0.857x1.214]k76XpnXSeHbS06udfFQCJg==[/tex]和移动副间的滑动摩擦系数[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex];连杆[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex]和滑块[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]的重力[tex=2.786x1.214]V+DUsTTO2AGcPgeKZ1D92NIZ0Dym9a4stJIM9eeJR/I=[/tex];总惯性力[tex=1.071x1.429]2HsJV1iHNmDm+5Ffwtp+4lBU2TZXWnVxV8UfLsPBBqE=[/tex]和惯性力[tex=1.357x1.214]UvL4mMJM19BxkXhprOffzL7ClmH0TMX0lPpXYTZvikY=[/tex]以及作用在滑块上的有效阻力[tex=1.0x1.214]XK6VqoelQ6b/dg7HFNe2xQ==[/tex],.如图示。[tex=1.071x1.0]NWaIKjLEbGq0Av3TboumfA==[/tex]为顺时针方向。现需求考虑摩擦力的各运动副反力及作用在构件[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]上的驱动力矩[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]。试写出求解第二次逼近值的步骤及有关力多边形。
- 给定图[tex=4.0x1.357]yW/Sa0HYYSgWDqqktERSvSBe7S4aZr6ltchCYx0qg+4=[/tex],如图6.11所示.[img=278x348]17863899051b602.png[/img](1)在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中找出一条长度为7的通路;(2)在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中找出一条长度为4的简单通路;(3)在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中找出一条长度为4的简单回路.
- 对于以下两种情形:(1)x为自变量,(2)x为中间变量,求函数[tex=2.214x1.214]sy9gaFRMGlrH59gm9bWSDg==[/tex]的[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex]
内容
- 0
设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]为两事件,[tex=4.286x1.357]f2/QUECS2Xh01+rxCnKQrw==[/tex], [tex=4.286x1.357]E9G2+TtFKT3LPAmUm/aNIQ==[/tex], [tex=5.0x1.357]r3cOlHX0y2q0HwG0hFr1kQ==[/tex], 求:(1)[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]发生但[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]不发生的概率;(2)[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]都不发生的概率;(3)至少有一个事件不发生的概率.
- 1
如图所示,计算下列情况下各均质物体的动能:1)重量为[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]、长为[tex=0.357x1.0]5vVfAZliYwqMw8JaLE+iEA==[/tex]的直杆以角速度[tex=0.643x0.786]w3w3weJ46ITy63MtvkP9fQ==[/tex]绕[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]轴转动;2)重量为[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]、半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的圆盘以角速度[tex=0.643x0.786]w3w3weJ46ITy63MtvkP9fQ==[/tex]绕[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]轴转动,圆心为[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex],[tex=2.786x1.0]q/Q8O8PUnuBG/4z6Y3Aiig==[/tex],3)重量为[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]、半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的圆盘在水平面上作纯滚动,质心[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]的速度为[tex=1.0x1.0]MHvbjlkwSJny2jB2CiNlqA==[/tex]。[img=287x180]17d1cdf411f417b.png[/img]
- 2
如果X满足[tex=1.0x1.214]uDLq1pltx8bidzPpXavtVw==[/tex]公理和[tex=1.0x1.214]HSZQQmMoQLPTE8orMMvtgA==[/tex]公理,则也满足[tex=1.0x1.214]9/dZqDJTFQ9zWNw2dnPh4g==[/tex]公理。
- 3
设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为定义在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上以[tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex]为周期的函数,[tex=0.571x0.786]WLga5RWgrUta8vWDwROpYA==[/tex] 为实数.。证明 : 若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在 [tex=3.429x1.357]yn+eS8j3jL70HAQbcELryg==[/tex]上有界,则[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上有界。
- 4
直角三角形截面斜边中点 I 处的一对正交坐标轴 x, y 如思考题 图 (a) 所示, 试问:(1) x, y是否为一对主惯性轴?(2) 不用积分, 计算其[tex=0.857x1.214]5C3CSTS9+hfi/rprT2x6Ww==[/tex] 和 [tex=1.214x1.286]XnIhJGSFoJz12SXYPUzayA==[/tex]值。[img=344x347]17e1df5083d865b.png[/img]