求一底面半径为[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],高为[tex=0.643x1.0]8+M7OwdUGZPUoOQAaQHP2A==[/tex]的直立圆锥的形心及关于它的对称性的转动惯量(设圆锥的密度为1)
举一反三
- 底为[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],高为[tex=0.643x1.0]8+M7OwdUGZPUoOQAaQHP2A==[/tex]的三角形,试求其内接最大矩形的面积.
- 求半径为[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]、中心角为[tex=1.214x1.214]ihAHswk5yGor+8lNamtQNg==[/tex]的均匀圆弧(线密度 [tex=1.857x1.214]gc5Pg8UmxVfEl5tk8Vyckg==[/tex] ) 的重心。
- 设有一均匀圆盘,半径为[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],质量为[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex],求它对于通过其圆心且与盘垂直的轴之转动惯量.
- 设一立体,其底面是半径为[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的圆,垂直于底面某一直径的截面都是高为[tex=0.643x1.0]8+M7OwdUGZPUoOQAaQHP2A==[/tex]的等腰三角形,求这立体的体积.
- 设半径为 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 的球的球心在以原点为中心、[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex] 为半径的球面上[tex=5.786x1.357]Wr3eYzLjwBaBju8O43wx7Q==[/tex] 证明半径为 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 的球夹在半径为 [tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex] 的球内的 表面积为最大时, [tex=3.429x2.357]K0k9l0gJlLpPgPbth4+i9cOjhEDYqiUuic/MSObpaa4=[/tex]