当x趋于0时,lim(1+X)^(1/X^2)和lim(1+X)^(1/X^3)中无穷大量是?
这里是另有玄机.实际上,当x从0的两侧分别趋近于0时,(1+x)^(1/x²)的渐进行为是不同的.具体来说:lim{x→0-}(1+x)^(1/x²)=0,lim{x→0+}(1+x)^(1/x²)=+∞.因此不能说x→0时(1+x)^(1/x²)...
举一反三
- 【单选题】若 f ( x ) = ( x − 1 ) x 2 − 1 2 , g ( x ) = x − 1 x + 1 ,则? A. f ( x ) = g ( x ) "> f ( x ) = g ( x ) B. lim x → 1 f ( x ) = g ( x ) "> lim x → 1 f ( x ) = g ( x ) C. lim x → 1 f ( x ) = lim x → 1 g ( x ) "> lim x → 1 f ( x ) = lim x → 1 g ( x ) D. 以上等式均不成立
- ①lim(x→∞)sin(1/x)/(1/x)等于多少?②lim(x→0)sin(1/x)/(1/x)等于多少?
- 计算极限lim(x趋向于无穷大){[(a^x)+1]/x}^1/x,(a>0,a不等于1)
- 设函数$f(x)=\ln (1+x)$.若$f(x)=x\ {f}'(\xi )$ 且 $\xi$介于$0$和$x$之间,则$\underset{x\to 0}{\mathop{\lim }}\,\frac{\xi }{x}=$ A: $1$ B: $2$ C: $\frac{1}{2}$ D: $-\frac{1}{2}$
- 常数e=2.7182818...具有一些非常有用的特性,具体来讲,e是当x趋于无穷大时( )的极限。 A: (1+1/x)1/x B: (1+1/x)x C: (1+x)x D: (1+x)1/x
内容
- 0
高等数学求极限:W=lim(x趋于无穷)(1/x+2^1/x)^x相信您能看懂.
- 1
lim(x趋向于无穷大时)e^(1/x)
- 2
lim(x/2)^(x/x-2).x趋向于2!第二题:lim(e^(x)-1/x).x趋向于0
- 3
高等数学求极限,求lim[1/e*(1+x)^(1/x)]^(1/x)【x趋于0】
- 4
下列极限计算正确的是( ). A: \(\lim \limits_{x \to 0} { { \left| x \right|} \over x} = 1\) B: \(\lim \limits_{x \to {0^ + }} { { \left| x \right|} \over x} = 1\) C: \(\lim \limits_{x \to 0} {(1 - {1 \over {2x}})^{2x}} = {e^{ - 1}}\) D: \(\lim \limits_{x \to \infty } {(1 - {1 \over {2x}})^{2x}} = e\)