• 2022-06-19
    设函数$f(x)=\ln (1+x)$.若$f(x)=x\ {f}'(\xi )$ 且 $\xi$介于$0$和$x$之间,则$\underset{x\to 0}{\mathop{\lim }}\,\frac{\xi }{x}=$
    A: $1$
    B: $2$
    C: $\frac{1}{2}$
    D: $-\frac{1}{2}$
  • C

    举一反三

    内容

    • 0

      已知函数$y= \ln (1+ x) $,则$y''(x) =$( )。 A: $\frac{1}{(1+x)^2}$ B: $-\frac{1}{(1+x)^2}$ C: $-\frac{1}{1+x}$ D: $\frac{1}{1+x}$

    • 1

      4.下列函数中,在区间$(0,1)$内必有零点的是()。 A: $f(x)\in C(0,1)$,且$f(0)f(1)\lt 0$ B: $f(x)\in C(0,1)$,且$f(\frac{1}{2})f(1)\lt 0$ C: $f(x)\in C(0,1)$,且$f(0)f(\frac{1}{2})\lt 0$ D: $f(x)\in C(0,1)$,且$f(\frac{1}{4})f(\frac{1}{2})\lt 0$

    • 2

      5.关于函数极限,给出以下结论:① 若$\underset{x\to 0}{\mathop{\lim }}\,f({{x}^{2}})=A$,则$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$;② 若$\underset{x\to 0}{\mathop{\lim }}\,f({{x}^{3}})=A$,则$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$;③ 若$f(x)$是周期函数,且$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$,则$f(x)\equiv A$;④ 若$f(x)$是周期函数,且$\underset{x\to \infty }{\mathop{\lim }}\,f(x)=A$,则$f(x)\equiv A$。其中正确结论的编号是 A: ① ② B: ③ ④ C: ① ③ D: ② ④

    • 3

      将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)

    • 4

      设函数$f(x)$在$x=0$处连续,且$\underset{h\to 0}{\mathop{\lim }}\,\frac{f({{h}^{2}})}{{{h}^{2}}}=1$,则()。 A: $f(0)=0$且${{{f}'}_{-}}(0)$存在 B: $f(0)=1$且${{{f}'}_{-}}(0)$存在 C: $f(0)=0$且${{{f}'}_{+}}(0)$存在 D: $f(0)=1$且${{{f}'}_{+}}(0)$存在