A: $1$
B: $2$
C: $\frac{1}{2}$
D: $-\frac{1}{2}$
举一反三
- 11. 函数$f(x)=\frac{x}{(1+x)^2}$ 的极大值为 A: $x=\frac{1}{4}$ B: $x=1$ C: $x=\frac{1}{2}$ D: $x=0$
- 2.设$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f(x)$存在,$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g(x)$不存在,则( )。 A: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$一定都不存在 B: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$一定都存在 C: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$中恰有一个存在 D: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)+g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)-g(x)]$一定都不存在
- 函数$f(x)=\ln \ln x$的导数是( )。 A: $\frac{1}{x}$ B: $\frac{1}{{{x}^{2}}}$ C: $\frac{1}{\ln x}$ D: $\frac{1}{x\ln x}$
- 10. 设函数$f(x)$在$x=a$的某邻域内有定义,则$f(x)$在$x=a$处可导的充分必要条件是()。 A: $\underset{h\to 0}{\mathop{\lim }}\,h(f(a+\frac{1}{h})-f(a))$存在 B: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+2h)-f(a+h)}{h}$存在 C: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a)-f(a-h)}{h}$存在 D: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+h)-f(a-h)}{h}$存在
- 1.下列函数中,在定义域上无界的函数是 A: $f(x)=\frac{1}{x}\sin x$ B: $f(x)=x^2\sin \frac{1}{x}$ C: $f(x)=\frac{\ln x}{1+{{\ln }^{2}}x}$ D: $f(x)=\frac{1}{{{\text{e}}^{x}}+{{\text{e}}^{-x}}}$
内容
- 0
已知函数$y= \ln (1+ x) $,则$y''(x) =$( )。 A: $\frac{1}{(1+x)^2}$ B: $-\frac{1}{(1+x)^2}$ C: $-\frac{1}{1+x}$ D: $\frac{1}{1+x}$
- 1
4.下列函数中,在区间$(0,1)$内必有零点的是()。 A: $f(x)\in C(0,1)$,且$f(0)f(1)\lt 0$ B: $f(x)\in C(0,1)$,且$f(\frac{1}{2})f(1)\lt 0$ C: $f(x)\in C(0,1)$,且$f(0)f(\frac{1}{2})\lt 0$ D: $f(x)\in C(0,1)$,且$f(\frac{1}{4})f(\frac{1}{2})\lt 0$
- 2
5.关于函数极限,给出以下结论:① 若$\underset{x\to 0}{\mathop{\lim }}\,f({{x}^{2}})=A$,则$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$;② 若$\underset{x\to 0}{\mathop{\lim }}\,f({{x}^{3}})=A$,则$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$;③ 若$f(x)$是周期函数,且$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$,则$f(x)\equiv A$;④ 若$f(x)$是周期函数,且$\underset{x\to \infty }{\mathop{\lim }}\,f(x)=A$,则$f(x)\equiv A$。其中正确结论的编号是 A: ① ② B: ③ ④ C: ① ③ D: ② ④
- 3
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
- 4
设函数$f(x)$在$x=0$处连续,且$\underset{h\to 0}{\mathop{\lim }}\,\frac{f({{h}^{2}})}{{{h}^{2}}}=1$,则()。 A: $f(0)=0$且${{{f}'}_{-}}(0)$存在 B: $f(0)=1$且${{{f}'}_{-}}(0)$存在 C: $f(0)=0$且${{{f}'}_{+}}(0)$存在 D: $f(0)=1$且${{{f}'}_{+}}(0)$存在