设函数$f(x)=\ln (1+x)$.若$f(x)=x\ {f}'(\xi )$ 且 $\xi$介于$0$和$x$之间,则$\underset{x\to 0}{\mathop{\lim }}\,\frac{\xi }{x}=$
A: $1$
B: $2$
C: $\frac{1}{2}$
D: $-\frac{1}{2}$
A: $1$
B: $2$
C: $\frac{1}{2}$
D: $-\frac{1}{2}$
举一反三
- 11. 函数$f(x)=\frac{x}{(1+x)^2}$ 的极大值为 A: $x=\frac{1}{4}$ B: $x=1$ C: $x=\frac{1}{2}$ D: $x=0$
- 2.设$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f(x)$存在,$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g(x)$不存在,则( )。 A: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$一定都不存在 B: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$一定都存在 C: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$中恰有一个存在 D: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)+g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)-g(x)]$一定都不存在
- 函数$f(x)=\ln \ln x$的导数是( )。 A: $\frac{1}{x}$ B: $\frac{1}{{{x}^{2}}}$ C: $\frac{1}{\ln x}$ D: $\frac{1}{x\ln x}$
- 10. 设函数$f(x)$在$x=a$的某邻域内有定义,则$f(x)$在$x=a$处可导的充分必要条件是()。 A: $\underset{h\to 0}{\mathop{\lim }}\,h(f(a+\frac{1}{h})-f(a))$存在 B: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+2h)-f(a+h)}{h}$存在 C: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a)-f(a-h)}{h}$存在 D: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+h)-f(a-h)}{h}$存在
- 1.下列函数中,在定义域上无界的函数是 A: $f(x)=\frac{1}{x}\sin x$ B: $f(x)=x^2\sin \frac{1}{x}$ C: $f(x)=\frac{\ln x}{1+{{\ln }^{2}}x}$ D: $f(x)=\frac{1}{{{\text{e}}^{x}}+{{\text{e}}^{-x}}}$