求[tex=9.5x1.357]tFEVBV//qc+ujboDbbu46kDzI0vm84RMHyv/IBT278lHUihIBMpwkYL1y4O78IqJ[/tex]的解
举一反三
- 求下列两组卷积,并注意相互间的区别。(1) [tex=8.214x1.357]A+HKBenPHqeRmMYEbfLc5XsOB8g1VN4ga/aw3GD01TY=[/tex] 求 [tex=6.143x1.357]4sDNIj800KYSuI/aDxg1NJGQx7Ne5bwrn8gFSDT53Rw=[/tex](2) [tex=9.5x1.357]v2+xjlmkBA8Yeuo9SVuEWcRDcEhYbkogFB/zXrwPEB8=[/tex] 求 [tex=6.143x1.357]4sDNIj800KYSuI/aDxg1NDF6jCflmfZ+UWSjgFmQicY=[/tex]
- 求微分方程[tex=8.357x1.357]m5JIhzHdcS9bmKEwWvshLHUX4xMqwQRk2Suh2UXtBbw=[/tex]的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2及x轴所围成平面图形绕x轴旋转一周所得旋转体体积最小.
- 求以 [tex=2.357x1.214]u/hcg1/55F2pvtGMeEw9pw==[/tex] 和 [tex=3.071x1.214]5sVa6GD0b7ovTx2rohhG1G+NFmzyMDXRjuEJawew8Wg=[/tex]为特解的最低阶的常系数线性齐次方程. 解 由 $y=3 x$ 为特解可知 $\lambda_{1}=0$ 至少是特征方程的二重根. 由 $y=\sin 2 x$ 为特解可知特征方程有共功特征根 $\lambda_{2,3}=\pm 2 i .$ 所以特征方程为 $(\lambda-0)^{2}(\lambda-2 i)(\lambda+2 i)=0$, 即 $\lambda^{4}+4 \lambda^{2}=0 .$所以微分方程为 $y^{(4)}+4 y^{\prime \prime}=0 .$
- 设[tex=21.214x2.786]YHIKtHtTy6YeetIBukGWJ/+4CPibC+H1hzFh9VOwgL0S9GN2pUoehfDbgBGc5EnrdWI+XuY+Ymu+pDcK9HiZ9yXnaA2Bu4G6/6u1St7CLSMx59I82bjv1bCI2gEnrsJNql1frne8KsMSeBQW1cNKcuTaRB/F+4LAgzRxiKyGrOQiHFMyz8xDbT+BEy6KACG1U8FMEJreyBo/QSwsxRx8RDhp3OZ7UFFTQRocd2V6R+rERHrZxrt9oGOmh+8uIFvx9eVIIoeiy4uSVcNteqe6RBKTF8FWle9nj+GzCitqy6E=[/tex]且A+2B-C=O,求x,y,u,v的值.
- 设[tex=21.214x2.786]YHIKtHtTy6YeetIBukGWJ/+4CPibC+H1hzFh9VOwgL0S9GN2pUoehfDbgBGc5EnrdWI+XuY+Ymu+pDcK9HiZ9yXnaA2Bu4G6/6u1St7CLSMx59I82bjv1bCI2gEnrsJNql1frne8KsMSeBQW1cNKcuTaRB/F+4LAgzRxiKyGrOQiHFMyz8xDbT+BEy6KACG1U8FMEJreyBo/QSwsxRx8RDhp3OZ7UFFTQRocd2V6R+rERHrZxrt9oGOmh+8uIFvx9eVIIoeiy4uSVcNteqe6RBKTF8FWle9nj+GzCitqy6E=[/tex]且A+2B-C=O,求x,y,u,v的值.