举一反三
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的密度函数为[p=align:center][tex=10.429x3.643]BTeyLq0XT+/djvCqLM2VYUvSdJjsC26H2oOKhinnT+tCWugNQFy4epA3Ud95paEkElcsGzUHg8NTJvUe0DMFmBzP04bKz1xXMK8HUOtCJPY=[/tex]现对 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 进行 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次独立重复观测, 以 [tex=1.071x1.214]lqcMgZ/cY5xLkTl+dOZOYg==[/tex] 表示观测值不大于 0.1 的次数,试求 [tex=1.071x1.214]lqcMgZ/cY5xLkTl+dOZOYg==[/tex] 的概率分布.
- 假设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率密度为[br][/br][tex=9.857x2.429]q6R7YbL5k5/LVjkecbTrjGpYhVnuuPMG9no7ffThizj6lMx61S5Z1nEx2MorMhKHRLuM8hHJOFwszSTnx1hKHQ==[/tex]现在对[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]进行[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次独立重复观测,以[tex=1.071x1.214]lqcMgZ/cY5xLkTl+dOZOYg==[/tex]表示观测值不大于[tex=1.286x1.0]QL7mLlVQnYLoa3OCU4ox/Q==[/tex]的次数. 试求随机变量[tex=1.071x1.214]lqcMgZ/cY5xLkTl+dOZOYg==[/tex]的概率分布.
- 设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]在[tex=2.0x1.357]A3mAla62KbVasY+ZpQp/kg==[/tex]上服从均匀分布,现在对[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]进行 3 次独立观测,试求至少有 2 次观测值大于 3 的概率.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 将一枚硬币连掷 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次,以 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 表示这 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次中出现正面的次数,求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布列。
内容
- 0
已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=13.0x2.357]nHHN4pLpj1G1uhQpyLUatreMse16BhxCX+nm8cZ5nxW1R+KIjomlLFfyrFplv9mykQ0cFIpaQRbRTlU90WEwNA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数.
- 1
设 [tex=5.357x1.357]k2OWQm3x3/tspVpDkybbPLjBDybW/zEAryrvt8KpVyE=[/tex] 现在对 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 进行 3 次独立观测, 求:至少有两次观测值大于 3 的概率.
- 2
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的密度函数为[tex=8.5x2.143]Ca+H1VjqhIFFe3JC2XAU2rOuJUFZivOezxxgZEpNix4wWRHa7Q2XYP2aHPPIgOy/[/tex],试求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的特征函数.
- 3
已知离散型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布为[img=397x83]178ee6aa0d1a25e.png[/img](1) 写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望和方差.
- 4
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为 : [tex=10.357x2.5]D7bc2+eUwrrbwGCdv8wBHqSGNi2eUimJPhHvHDm2CRQIB0JsD/yM1xJWLrcsKlMCcd5OnLoQn8mUkkof5ma5/A==[/tex], 求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的期望值与方差。