• 2022-06-15
    求不定方程[tex=4.929x1.429]ZCKGQJBIC9T8V2Y2rApkwKRvjlsbSOBCsa+Fc1XcJOg=[/tex] 的正整数解
  • 由[tex=4.929x1.429]ZCKGQJBIC9T8V2Y2rApkwKRvjlsbSOBCsa+Fc1XcJOg=[/tex] 知,[tex=1.571x1.0]yEkelBkn5WAI1O+m8CZJYw==[/tex]同为奇数或同为偶数.[tex=1.571x1.0]yEkelBkn5WAI1O+m8CZJYw==[/tex]为偶数,则[tex=2.714x1.429]4SSXdgztSbGaoP33dxMjIJ44J5dViW6G+ATaIsabLdY=[/tex] 有因数 4 , 而 170 无 4 因数;[tex=1.571x1.0]yEkelBkn5WAI1O+m8CZJYw==[/tex] 为奇数,设[tex=8.0x1.214]qhiimcvnf7T83rt37/fbck+kT3GklsEyRTbh+daEeC8=[/tex] 代入化简得 [tex=8.929x1.357]v+FGDY/4nlGxEjFUpzovqk1IUIh8yLyoKlo/3G91Jws=[/tex], 仅当[tex=4.143x1.214]3ugPG49/iuXscOLk0baFMA==[/tex] 或[tex=4.143x1.214]3ugPG49/iuXscOLk0baFMA==[/tex]时可求得:[tex=18.0x2.786]7EJHVCtO2IWq3KpdB+jQsm43aUCeelEaMzVlyjibby4zoHSTGZqjiVT9CiA8T9ujdHU6MiI0A9HX+M5rO0CJ0WPvkww4+xku3e+qX+0Zv2DkXBIrAchVxd3WSu+yzRy0b3xOLCpy3UKU7rIV0E6i7LGHbV37WghfhGu1bGCf2xvWvzFfvRiDKHBlxAVM4fAWmGhXKXIrcW/Oes/qQ/QkP0x7EKW/upXyBKs1AfUTTAe5/OhkBGTokkrV1ozUnwa5gQtnVM0ANLb0PimNzRL/bvcx/k7huRcWXJvBTeu+f6c=[/tex]

    内容

    • 0

      当整数n>2时,关于x,y,z的不定方程x^n+y^n=z^n.无正整数解?

    • 1

      求方程[tex=4.357x1.429]ziGBVd2bSR6JqPbnr0SEAOpMH0QPqKPPdjpiNZtDMBo=[/tex]的满足[tex=6.929x1.357]HCLG8tEu+pH8BCmxx3MBqx2QSg9cdrEvcXvEUVYK1V4=[/tex]的正整数解

    • 2

      将下面命题符号化:只有在正整数[tex=2.5x1.143]W6+C7DnF3HN/exqxnXch/Q==[/tex]时,不定方程[tex=4.571x1.214]F+SAlxNthCcHxEYrDdjIi67IolmYW99H0tst1XJmCB0=[/tex]才有正整数解。

    • 3

      以点\( (2, - 1,2) \)求球心,3为半径的球面方程为( ) A: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)

    • 4

      指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形?(1)[tex=3.643x1.214]HaCKAIbgyWAgWU93vtBvuQ==[/tex](2)[tex=4.929x1.429]6kHZ/PUKHPWY5pK3iObT7g==[/tex](3)[tex=4.929x1.429]9Gqjd6yBqq9mLXk+g+ii+g==[/tex](4)[tex=4.071x1.429]FvkHEN0fOmNFbNMs/dtr0A==[/tex]