证明Euler定理:若[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正整数, [tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]是与[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]互素的整数,则[tex=7.786x1.571]ce4aKIu9pHkSvXKFvVcfNOHqgh5zS0nNv2n4aOwxc08=[/tex],其中[tex=2.071x1.357]Q3CGpDoBA3UwvlngA8cIKQ==[/tex]是Euler函数,即[tex=2.071x1.357]Q3CGpDoBA3UwvlngA8cIKQ==[/tex]是与[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]互素的不超过[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的正整数的个数.特别地,若[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是素数,则得到Fermat小定理:[tex=9.571x1.357]Y/31J0hc9a+5psX24upYCFSIeVfdzK03heOLofcmTZKmb0bgJY4PHbSBfj2fYuvYS6sPm4L9LmIJvnb3w1q1Qg==[/tex].
举一反三
- [tex=1.929x1.357]dWatJMLI7pN/xzYgReR9Ug==[/tex]中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次首 1 不可约多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]称为[tex=2.143x1.357]dWatJMLI7pN/xzYgReR9Ug==[/tex]中的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次本原多项式, 如果[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的某一根[tex=0.643x0.786]cnVwa8IjZzNSEmAUXJ8VCQ==[/tex]是域[tex=2.357x1.357]0VK3/N/fLOoUyml49ohHEw==[/tex]的乘法循环群的生成元. 证明[tex=2.143x1.357]dWatJMLI7pN/xzYgReR9Ug==[/tex]中共有[tex=4.071x2.429]0drReSlpMjMXE1rfRani/DeJvia0KsjFAPcCA14ydQuvAviOTTpbJlfkinpauZHT[/tex]个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次本原多项式, 其中[tex=2.071x1.357]Q3CGpDoBA3UwvlngA8cIKQ==[/tex]是 Euler 函数 (即[tex=2.071x1.357]Q3CGpDoBA3UwvlngA8cIKQ==[/tex]是小于[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的正整数中与[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]互素的正整数的个数).
- 证明:若[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是大于1的整数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]可以写成素数之积。
- 证明如果[tex=2.286x1.357]2kqjUtwikOHWMG3hEG2REw==[/tex]是完全数,其中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是整数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是偶数。
- 证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是整数且[tex=1.0x1.214]S08+KKG98HbrAJCN7f6pjg==[/tex]是奇数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数。
- 证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是一个整数且[tex=2.429x1.143]iYaM6mXHRcXGx9kzFAhMgQ==[/tex]是奇数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数。