已知函数y=y(x)在任意点x处的增量△y=+α,且当△x→0时,α是△x的高阶无穷小,y(0)=π,则y(1)等于()
A:
B:
C:
D:
A:
B:
C:
D:
举一反三
- 已知函数y=y(x)在任意点x处的增量△y=+α,且当△x→0时,α是△x的高阶无穷小,y(0)=π,则y(1)等于() A: B: C: D:
- 己知函数y=y(x)在任意点x处的增量Δy=Δx+α,且当Δx→0时,α是Δx的高阶无穷小,y(0)=π,则y(1)等于() A: 2π B: π C: D:
- 有一个分段函数,当x大于0时,y的值是1;当x为0时,y的值是0;当x A: if(x >= 0)if(x > 0) y = 1;else y = 0;else y = -1; B: if(x > 0) y = 1;else if(x == 0) y = 0;else y = -1; C: y = 0;if(x > 0) y = 1;else if(x D: y = 0; if(x >= 0); if(x > 0) y = 1; else y = -1;
- 【单选题】下面程序段,所表示的含义是()。 y=-l ; if (x!=0) if (x>0) y=1; else y=0 A. 当 x>0 时 y=l ;当 x<0 时 y=0 ;当 x=0 时 y=-1 B. 当 x>0 时 y=l ;当 x<0 时 y=0 ;当 x!=0 时 y=-1 C. 当 x!=0 时 y=l ;当 x=0 时 y=0 ;当 x<0 时 y=-1 D. 当 x<0 时 y=l ;当 x>0 时 y=0 ;当 x=0 时 y=0
- 设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选择正确的是()。 A: 若f’(x,y)=0,则f’(x,y)=0。 B: 若f’(x,y)=0,则f’(x,y)≠0。 C: 若f’(x,y)≠0,则f’(x,y)=0。 D: 若f’(x,y)≠0,则f’(x,y)≠0。