证明方程 [tex=4.929x1.143]J2r51kpR0bwr3LA+cgi9cQ==[/tex]在 [tex=2.214x1.357]ACMDGdYp2wI2zYGOP/Za5f1P2FWKiGWU3JCoSnUjkmU=[/tex] 上只有一个实根.
举一反三
- 令 [tex=5.286x2.5]w4Zp42THVdKRUWaWh6McXYYT5+hmuP5oUewyYwttvP5YQmoSpB8VAdR1QL77qYOj[/tex] 是实系数三次方程 [tex=6.214x1.429]WdQf/RlC+T6vYuYi+YX4MA==[/tex] 的判别式, 求证:(1) 若 [tex=2.714x1.071]kzJdFf4nPeXKhbtP01JMCg==[/tex], 则方程有 1 个实根和 2 个共轭复根;(2) 若 [tex=2.143x1.0]au1nduhIYgjkxMPZw2ynrQ==[/tex], 则方程有 3 个实根, 其中 2 个根相同;(3) 若 [tex=2.714x1.071]8c95v2LCoentTCU4dmXp6g==[/tex], 则方程有 3 个互不相等的实根.
- 证明方程[tex=4.143x1.357]9DWPgekcNXGr2rMeBRJTWg==[/tex]在1和2之间至少存在一个实根。
- 证明:方程 [tex=5.429x1.357]SOWeJ1nciNV7jVpKPrZxkw==[/tex]至少有一个实根介于 1 和 2 之间.
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 在 [0,1]上具有2阶导数,且[tex=3.643x1.286]33dm3ityTTemCRc5ZsxYkQ==[/tex],[tex=6.571x2.071]9i81kkdiF6aVLw4Z6boxnO7AgoAJz706lR8BAxhRfN53UFSbREToGNjosBflfRksjuR47v1Wf5g1CtgCe2NVNw==[/tex] ,证明:(1)方程[tex=3.714x1.286]0ZoDYEiHpPjb6Gw3Oeomrg==[/tex] 在区间 (0,1)至少存在一个实根;(2)方程 [tex=11.5x1.929]0doxqw2d0aQzw6OeeZxb/bs8P31eHb+5ooXhPxTaxtRxhKSFUcc70MME3syAEJimy7s/+WkFCqXnLOUT77uBwceLCnBUJn/gEZZDrXHET0ToWDYMUpvWn71bViLDAhFgkVtuerPetZ7T48N20ZmPiQ==[/tex]在区间(0,1)内至少存在两个不同实根.
- 证明方程 [tex=4.143x1.357]/ybemWJQH/wH/10bhavH7Q==[/tex] 在 1 与 2 之间至少存在一个实根.