函数\( f\left( x \right) = 2x + 3\root 3 \of { { x^2}} \)的极大值为 ______ ______
举一反三
- 函数\( y = \left( {x - 4} \right)\root 3 \of { { {\left( {x + 1} \right)}^2}} \)的极大值为( )。 A: 0 B: 2 C: 3 D: 4
- 函数\( y = \left( {2x - 5} \right)\root 3 \of { { x^2}} \)的驻点为x= _______ ______
- 求函数$y = \root 3 \of {x + \sqrt x } $的导数$y' = $( ) A: ${{1 + 2\sqrt x } \over {\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ B: $ {{1 + 2\sqrt x } \over {6\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ C: $ {{1 + 2\sqrt x } \over {6\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ D: $ {{1 + 2\sqrt x } \over {\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$
- 函数\( f\left( x \right) = 2{x^3} + 3{x^2} - 12x + 14 \)在\( [ - 3,4] \)上的最大值为 _______ ______
- 若连续函数\(f\left( x \right)\)满足关系式\(f\left( x \right) = \int_0^{2x} {f\left( { { t \over 2}} \right)} \,dt + \ln 2\),则\(f\left( x \right)\)等于( )。 A: \({e^{2x}}\ln 2\) B: \({e^x}\ln 2\) C: \({e^x} + \ln 2\) D: \({e^{2x}} + \ln 2\)