已知函数[img=102x27]18030256dad01f2.png[/img],求其三阶导数,下面命令正确的是()
A: syms t; G=simplify(diff(t^2*sin(t),t,3))
B: syms t; G=simplify(int(t^2*sin(t),t,3))
C: syms t; G=simplify(diff(t^2*sin(t),t))
D: syms t; G=simplify(int(t^2*sin(t),t))
A: syms t; G=simplify(diff(t^2*sin(t),t,3))
B: syms t; G=simplify(int(t^2*sin(t),t,3))
C: syms t; G=simplify(diff(t^2*sin(t),t))
D: syms t; G=simplify(int(t^2*sin(t),t))
举一反三
- 已知“syms t; x=cos(t); y=sin(t); z=t; xt=diff(x,'t'); yt=diff(y,'t'); zt=diff(z,'t'); f=z^2/(x^2+y^2); g=sqrt(xt^2+yt^2+zt^2); I=int(f*g,t,0,2*pi)”,则下列说法正确的是【】
- 已知“syms x y z t a b; x=a*cos(t); y=a*sin(t); z=3*t; dx=diff(x,'t'); dy=diff(y,'t'); dz=diff(z,'t'); f=y*dx-x*dy+(x+y+z)*dz; t1=0; t2=2*pi; W=int(f,t,t1,t2)”,则正确的说法是【】
- 设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
- 设\(z = {e^{x - 2y}}\),而\(x = \sin t,\;y = {t^3},\)则\( { { dz} \over {dt}} = \)( ) A: \({e^{\sin t - 2{t^3}}}\) B: \({e^{\sin t - 2{t^3}}}\left( {\cos t - 6{t^2}} \right)\) C: \({e^{\sin t - 2{t^3}}}\ {\sin t } \) D: \({e^{\sin t - 2{t^3}}}\,{t^3}\)
- 求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)