• 2022-06-09
    讨论下列函数在指定点的连续性。若是间断点,说明它的类型。$f(x)=\left\{\begin{array}{ll}\frac{\tan x}{x} & x \neq k \pi \\ 0 & x=k \pi\end{array}\right.$:[tex=16.357x2.143]P/DECpOO94+pxMsHLwBqiQMWn4Y9d3Gu8WWPmTGbYDHFVfvBHBCIMhiBqDBDaJ5ZcKSQzkTMKaDT/2OoQWPZYQ==[/tex]
  • 因为 [color=#ff0000][tex=13.786x2.429]ENxIatiC2yqgaopSQCG83ozEZ1yXwezpXHKJ7erpPM0NM64HqxG0fv5Xvx4jqW1tfG3xh72NrYrlnWuW3qQ3/wQHKf6QhRUVSvDzkWOr2jf+vCM4AIyhCktLVJ84mEF4[/tex][/color][color=#ff0000][tex=19.571x2.429]/GlIwt0AxP0cr7n2bNhup+/GK8ZOKndN553mIjaXV3PIVSWal/tqwEX07LZLlFjVQLfZ8sz0wmAGNJwl7qBOU/eNXOdKNGpXP3+WstmkkLYJ40Ds+cDRXIysYKo16dXwSuY/JdsxiMTOHaFheV51sw==[/tex][/color][color=#ff0000][tex=13.643x2.643]ENxIatiC2yqgaopSQCG83lmcYadvje8CcAZ75WVyIEaK6+crYwq6OZouHJdJJiYIUnr1TG7oweuZC2fc0uZnmlZkdgECrZmMlI/gioMgCg++nBj3+5nPRLEniiVflwEPIReEOrDNtORLsDB++07G2g==[/tex][/color][color=#ff0000][/color]故函数在[color=#ff0000][tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex][/color]处间断,且为可去间断点(第一类间断点), 在[color=#ff0000][tex=6.143x1.357]cT3DTxPIKPN72fUTKO1Vml1d+oYJ+UCPWubOeOM5T7Q=[/tex][/color]处连续。在[color=#ff0000][tex=5.071x2.143]C45ejwPO4P/VZP2TQHeNvMAaZzjOGvNeb3Qj08l8e1o=[/tex][/color]处间断,且为无穷间断点 (第二类间断点)。[color=#ff0000][/color][br][/br]

    举一反三

    内容

    • 0

      $下列函数,哪一个是双射? $ A: $ f : N \rightarrow N, f(x)=x^{2}+2 $ B: $ f : N \rightarrow N, f(x)=x(\bmod 3) $ C: $f : N \rightarrow\{0,1\}, \quad f(x)=\left\{\begin{array}{ll}{1} , {x \in 偶数集} \\ {0} , {x \in 奇数集}\end{array}\right. $ D: $ f : R \rightarrow R, \quad f(x)=2 x-5 $

    • 1

      若随机变量\(X\)的分布函数\(F(x)=\left\{\begin{array}{cc}\dfrac{1}{1+x^2},&x\lt 0,\\1&x\ge 0.\\\end{array}\right.\) 则\(X\)是离散型随机变量。

    • 2

      函数$f(x)=\sin x + \cos x,x \in [0,2 \pi]$的上凸区间为 A: $[0,\frac{\pi}{4}] \cup [\frac{5}{4} \pi,2 \pi] $ B: $[\frac{\pi}{4},\frac{5}{4} \pi]$ C: $[0,\frac{3}{4}\pi] \cup [\frac{7}{4} \pi,2 \pi] $ D: $[\frac{3}{4} \pi,\frac{7}{4} \pi] $

    • 3

      函数$f(x) =sin^3 x, x \in [0,2 \pi]$的单调递减区间为 A: $[\frac{\pi}{2},\frac{3}{2} \pi]$ B: $[\frac{3}{2} \pi,2 \pi]$ C: $[0,\frac{\pi}{2}]$ D: $[0,2 \pi]$

    • 4

      \(已知二元函数f(x,y)=\sin{x^2y},则\frac{\partial f}{\partial x}(1,\pi)=(\,)\) A: \(\frac{\pi}{2}\) B: \(2\pi\) C: \(-2\pi\) D: \(-\frac{\pi}{2}\)