• 2021-04-14
    设随机变量$X$的概率密度为$f(x)=\left\{\begin{array}{left}e^{-x},& x\ge 0\\0 ,&x<0\end{array}\right.$,则$E(e^{-2X})=$
  • $\frac{1}{3}$

    举一反三

    内容

    • 0

      下列函数是多元初等函数的是( ) A: $f(x,y)=\left|x+y\right|$; B: $f(x,y)=\text{sgn}(x+y)$; C: $f(x,y)=\dfrac{\arcsin<br/>x-e^{y}}{~\ln(x^2+y^2)~}$; D: $f(x,y)=\left\{\begin{array}{cc}\dfrac{xy}{~x^2+y^2~},<br/>&amp;x^2+y^2\neq 0; \\0, &amp;x^2+y^2= 0. \end{array}\right.$

    • 1

      下列函数中,在其定义域内处处连续的是( )。 A: \(f(x) = \left\{ {\matrix{ { { {1 - {x^2}} \over {1 + x}}\quad ,x \ne 1} \cr {0\quad \quad ,x = 1} \cr } } \right.\) B: \(f(x) = \left\{ {\matrix{ {\ln x\quad ,x &gt; 0} \cr { { x^2}\quad ,x \le 0} \cr } } \right.\) C: \(f(x) = \left\{ {\matrix{ { { {\sqrt {x + 1} - 1} \over {\sqrt x }}\quad ,x &gt; 0} \cr {1\quad ,x\le 0} \cr } } \right.\) D: \(f(x) = \left\{ {\matrix{ { { x^2} + 2x\quad ,x \le 0} \cr { { e^x}\quad ,x &gt; 0} \cr } } \right.\)

    • 2

      (2). 设二维随机变量 ( (X,Y) ) 具有密度函数, [qquadqquad qquadqquad f(x,y)=left{ {{egin{array}{*{20}c} {ax,} & {0</p>

    • 3

      设\(D = \left\{ {(x,y)\left| { { x^2} + {y^2} \le 4,x \ge 0,y \ge 0} \right.} \right\}\),则\(\int\!\!\!\int\limits_D {(x + y)} d\sigma = \) A: \(0\) B: \( { { 8} \over 3}\) C: \( { { 16} \over 3}\) D: \( { { 32} \over 3}\)

    • 4

      随机变量\(X\)的密度函数\(f_X(x)\)没有\(f_X(x)\le 1\)这个限制条件。反例:若\(X\sim U[a,b]\),且区间的长度\(b-a\lt 1\),则易知密度函数\(f_X(x)=\left\{\begin{array}{cc}\dfrac{1}{b-a},&x\in[a,b],\\0,&其他.\end{array}\right.\)在\(a\lt x\lt b\)时,\(f_X(x)\gt 1.\)